\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

oaa cha cha :V mới đọc BĐT kiểu dạng này xong :P

Mình sẽ giải theo hai cách nhé :P

C1 : Áp dụng BĐT Cauchy - Schwarz dạng engel :

\(\dfrac{a^2_1+a^2_2+...+a^2_n}{b_1+b_2+...+b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) Ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{ab}\left(ĐPCM\right)\)

Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}\)

C2 : Áp dụng BĐT Cauchy dạng \(a+b\ge2ab\) ta có :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(=1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2+2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2+2\sqrt{1}=4\left(ĐPCM\right)\)

Đẳng thức xảy ra khi a = b.

9 tháng 5 2017

vì a,b>0, áp dụng bđt cô si ta có

\(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\)

nhân với nhau ta có

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

2 tháng 3 2018

áp dụng BĐT Cô si :

+ cho cặp số a,b ta được \(a+b\ge2\sqrt{ab}\left(1\right)\)

+ cho cặp số \(\dfrac{1}{a}+\dfrac{1}{b}\) ta được \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\left(2\right)\)

Nhân hai vế với \(\left(1\right),\left(2\right)\) ta được :\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.\dfrac{2}{\sqrt{ab}}=4\) (đpcm)

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

10 tháng 5 2017

áp dụng BĐT cô si, ta có:

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\) nhân 2 vé với nhau, ta được:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\sqrt{\dfrac{1}{ab}.ab}=4\left(đpcm\right)\)

23 tháng 9 2017

a)Theo bất đẳng thức cauchy:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Dấu "=" xảy ra khi: \(a=b\)

Ta có điều phải chứng minh

b)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Ta có điều phải chứng minh

12 tháng 8 2017

BDT

\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)

nhân PP vào là ra

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)

12 tháng 8 2017

Theo BĐT Cauchy:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

17 tháng 7 2017

Áp dụng BĐT AM - GM, ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\)

Dấu "=" xảy ra khi a = b = c

17 tháng 7 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9\left(a+b+c\right)}{\left(a+b+c\right)}=9\)

Dấu " = " khi a = b = c

16 tháng 4 2018

Áp dụng bất đẳng thức Cauchy-Schwarz: \(NL=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2\ge\dfrac{\left(a+\dfrac{1}{a}+b+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}\) Bất đẳng thức phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có: \(NL\ge\dfrac{\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}\ge\dfrac{\left(1+\dfrac{4}{a+b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)Dấu "=" khi \(a=b=\dfrac{1}{2}\)

16 tháng 4 2018

Ohhh yeah hay qá

23 tháng 4 2018

Áp dụng BĐT Cô - si : x + y ≥ \(2\sqrt{xy}\) ( x > 0 ; y > 0)

\(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{2}{\sqrt{ab}}\) ( a > 0 ; b > 0 )

⇒ ( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)\(\dfrac{2}{\sqrt{ab}}\).\(2\sqrt{ab}\)

⇒ ( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ≥ 4

23 tháng 4 2018

Xét hiệu:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)

\(=\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

Suy ra: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)