\(\frac{a}{b}\)+ \(\frac{b}{a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ko biết bạn ghi cái điều kiện có thiếu gì ko nha mình xin làm theo cách mình

Ta có a, b > 0(cái này mình đoán thui chứ bạn ghi ab>0)

=> a^2+b^2≥ 2ab 

Quy đồng biểu thức bạn đã cho rồi áp dụng cái vừa ghi trên và giữ nguyên mẫu ta sẽ đc 2

Vậy cái đề

8 tháng 4 2018

Ko biết bạn ghi cái điều kiện có thiếu gì ko nha mình xin làm theo cách mình

Ta có a, b > 0

(cái này mình đoán thui chứ bạn ghi ab>0) => a^2+b^2≥ 2ab 

Quy đồng biểu thức bạn đã cho rồi áp dụng cái vừa ghi trên và giữ nguyên mẫu ta sẽ đc 2 Vậy cái đề 

NV
15 tháng 6 2020

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2b\) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

Cộng vế với vế: \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

11 tháng 1 2017

Câu b nhá mn

11 tháng 1 2017

quá dễ BĐTAM-GM sẽ cân tất cả

21 tháng 8 2017

ko bts nha

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

NV
11 tháng 6 2019

\(C=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)

\(C\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{\frac{2\left(a+b\right)^2}{4}}\)

\(C\ge\frac{4}{\left(a+b\right)^2}+8+\frac{34}{\left(a+b\right)^2}\ge\frac{4}{4^2}+8+\frac{34}{4^2}=\frac{83}{8}\)

Dấu "=" khi \(a=b=2\)

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).

29 tháng 4 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\) (vì xy(x+y) >0 với x,y > 0)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( Đúng)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Xét hiệu:

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{a^2+2ab+b^2-4ab}{ab(a+b)}=\frac{a^2-2ab+b^2}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0, \forall a,b>0\)

\(\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)

Dấu "=" xảy ra khi $a=b$

27 tháng 10 2018

\(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\frac{1}{c}\ge\frac{1}{\sqrt{ab}}\Rightarrow c\le\sqrt{ab}\)

\(\Rightarrow ab\ge c^2\)

27 tháng 10 2018

Áp dụng bđt Cô si cho 2 số dương :

 \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\frac{2}{c}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow c\le\sqrt{ab}\)

\(\Rightarrow c^2\le ab\)

Dấu "=" xảy ra <=> a=b=c

23 tháng 11 2019

a) Đơn giản, tự chứng minh

b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)

Cách 2:

Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))

Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:

\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)

P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

22 tháng 8 2017

Ta có : \(\frac{a^2+b^2}{a+b}=\frac{\left(a^2+2ab+b^2\right)-2ab}{a+b}=\frac{\left(a+b\right)^2-2ab}{a+b}=a+b-\frac{2ab}{a+b}\)

Vì a;b > 0 nên theo cô si thì \(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\frac{2ab}{a+b}\le\frac{2ab}{2\sqrt{ab}}=\sqrt{ab}\)\(\Rightarrow a+b-\frac{2ab}{a+b}\ge a+b-\sqrt{ab}\left(1\right)\)

CM tương tự ta cũng có : \(\frac{b^2+c^2}{b+c}\ge b+c-\sqrt{bc}\left(2\right);\frac{c^2+a^2}{c+a}\ge c+a-\sqrt{ca}\left(3\right)\)

Cộng vế theo vế của (1) ; (2) ; (3) với nhau ta được : 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge a+b-\sqrt{ab}+bc-\sqrt{bc}+c+a-\sqrt{ca}\)

\(=\left(a+b+c\right)+\left(a+b+c-\sqrt{ab}-\sqrt{ac}-\sqrt{bc}\right)\)

\(=\left(a+b+c\right)+\frac{1}{2}\left(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}\right)\)

\(=\left(a+b+c\right)+\frac{1}{2}\left[\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right]\)

\(\ge a+b+c\)(do \(\frac{1}{2}\left[\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right]\ge0\)) (ĐPCM)

Vậy \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge a+b+c\)