
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)
Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)
\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)
P min = ... khi a=b=c = 1

\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)

Ta có:
\(\frac{a^2}{b}+9a^2b\ge2\sqrt{9a^4}=6a^2\)
Suy ra \(\frac{a^2}{b}\ge6a^2-9a^2b\)
Tương tự hai BĐT còn lại rồi cộng theo vế suy ra
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\) (*)
Mặt khác ta có BĐT sau: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\) (đúng)
Do đó \(\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Thay vào (*) ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\ge3\left(a^2+b^2+c^2\right)\)
Thay vào P: \(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(\ge2018.3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(=2017.3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(\ge2017\left(a+b+c\right)^2+2=2019\)
Đẳng thức xảy ra khi a = b = c= 1/3
P/s: Em trình bày hơi lủng củng nha!
Chợt nghĩ ra cách khác:Chú ý BĐT: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\frac{3\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=3\left(a^2+b^2+c^2\right)\)
Rồi đến đây ok:v

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{5}\)
\(\Rightarrow P\ge\frac{4}{5}\).Dấu "=" khi a=b=2,5
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{5}\)
\(\Rightarrow P\ge\frac{4}{5}.\)
Dấu "=" xảy ra khi và chỉ khi a = b = 2,5


Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(1=\frac{2017}{a}+\frac{2018}{b}\geq \frac{(\sqrt{2017}+\sqrt{2018})^2}{a+b}\)
\(\Rightarrow a+b\geq (\sqrt{2017}+\sqrt{2018})^2\)
Vậy $a+b$ min $=(\sqrt{2017}+\sqrt{2018})^2$