\(8+4\sqrt{3}\) và B=\(8-4\sqrt{3}\) . So sánh A+B và A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

\(A+B=8+4\sqrt{3}+8-4\sqrt{3}=16\)

\(A.B=\left(8+4\sqrt{3}\right)\left(8-4\sqrt{3}\right)=64-48=16\)

Vậy A+B=A.B=16

22 tháng 7 2015

\(A+B=8+4\sqrt{3}+8-4\sqrt{3}=16\)

\(A.B=8+4\sqrt{3}+8-4\sqrt{3}=\left(8+4\sqrt{3}\right)+\left(8-4\sqrt{3}\right)=16\)

vậy A + B = A . B vì cả hai đều bằng 16       

 

17 tháng 6 2019

a)\(1+\sqrt{3}>1+\sqrt{1}=1+1=2\)

Vậy \(1+\sqrt{3}>2\)

c) \(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy \(\sqrt{3}-1< 1\)

e) \(\sqrt{2}+\sqrt{5}< \sqrt{16}+\sqrt{16}=4+4=8\)

Vậy \(\sqrt{2}+\sqrt{5}< 8\)

a: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

b: \(\left(\sqrt{8}+\sqrt{11}\right)^2=19+2\cdot\sqrt{88}=19+\sqrt{352}\)

\(\left(\sqrt{38}\right)^2=19+19=19+\sqrt{361}\)

mà 352<361

nên \(\sqrt{8}+\sqrt{11}< \sqrt{38}\)

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3 

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

7 tháng 9 2019

a) Ta có: \(\left(2+\sqrt{3}\right)^2=4+2.2\sqrt{3}+\left(\sqrt{3}\right)^2=7+\sqrt{48}\)

\(\left(1+\sqrt{5}\right)^2=1+2\sqrt{5}+5=6+2\sqrt{5}=6+\sqrt{20}\)

\(\hept{\begin{cases}\sqrt{20}< \sqrt{48}\\6< 7\end{cases}}\Rightarrow\sqrt{20}+6< \sqrt{48}+7\)

\(\Rightarrow\left(1+\sqrt{5}\right)^2< \left(2+\sqrt{3}\right)^2\Rightarrow1+\sqrt{5}< 2+\sqrt{3}\)

b) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

7 tháng 9 2019

cảm ơn bạn nhiều