K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

a)a+b=1

A=(a+b)(a2-ab+b2)+3ab[(a+b)2-2ab]+6a2b2 = a2-ab+b2+3ab(1-2ab)+6a2b2=a2+2ab+b2=(a+b)2=1

b) làm như trên hoặc có cách để tính nhanh

x-y =1

chon x=1;y=0 thay vào ta được B=1 

19 tháng 12 2019

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

      \(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab(\left(a+b\right)^2-2ab)+6a^2b^2\left(a+b\right)\)

       \(=\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)+3ab\left(\left(a+b\right)^2-2ab\right)+6a^2b^2\left(a+b\right)\)

       \(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

        \(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

        \(=1\)

5 tháng 10 2019

a, A= a3 + b+ 3ab(a2 + b2) + 6a2b2(a + b) = a3 + b+ 3ab(a2 + b2) + 6a2b2

      = ( a + b)(a- ab + b2)+ 3ab(a+b2+ 2ab)

      = a- ab + b+ 3ab ( a+b)2

        = a- ab + b+ 3ab

      = a2 +2ab + b2= (a+b)2 = 1

b, B = x3 - y3 - 3xy

= (x-y)(x2+xy+y2) -3xy

= x2+xy+y-3xy

= x2-2xy+y2

= (x-y)2 = 1

chúc bn hc tốt ^^

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]

M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)

M = a2 - ab + b2 + 3ab.(a + b)2

M = a2 - ab + b2 + 3ab

M = a2 + b2 + 2ab

M = (a + b)2

M = 1

26 tháng 12 2020

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

Vậy M=1

26 tháng 12 2020

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

7 tháng 8 2020

(1) tào lao

7 tháng 8 2020

(1): (a+b)4=(a+b)3 * (a+b)

sử dụng hằng đẳng thức khai triển (a+b)3 sau đó nhân đa thức đó với (a+b) thì ta được vế phải :>

(2): (a+b)5 = (a+b)3*(a+b)2 

tương tự khai triển thành 2 đa thức rồi nhân vào với nhau là được vế phải :>

20 tháng 3 2020

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)