Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số các số hạng của a là:
[(2n-1)-1]:2+1=n(số)
=>A là:(2n-1+1)n:2==2n.n:2=n.n=n2
=>A là số chính phương
=>đpcm
Số số hạng là :
[(2n - 1) - 1] : 2 = (2n - 2) : 2 = n - 1 (số hạng)
Tổng A là :
[(2n - 1) + 1] . (n - 1) : 2 = 2n . (n - 1) : 2 = n . (n - 1) = n2 - n
Do đó A không phải là số chính phương.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 5198)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
\(C=13+13^2+13^3+...+13^{100}\)
\(13C=13\left(13+13^2+13^3+...+13^{100}\right)\)
\(13C=13^2+13^3+13^4+...+13^{101}\)
\(\Rightarrow12C=\left(13^2+13^3+13^4+...+13^{101}\right)-\left(13+13^2+13^3+...+13^{100}\right)\)\(\Rightarrow12C=13^{101}-13\)
\(\Rightarrow C=\dfrac{13^{101}-13}{12}\)
Ở đây 13 là số nguyên tố nên kết quả sẽ không là số chính phương.
5.52.53.54......5100 = 51+2+3+4+...+100 = 5100*101/2 = 55050 = 52525.2 = ( 52525 )2 là số chính phương
Vậy 5.52.53.54......5100 là số chính phương
có:
vì mũ cuối cùng là mũ 100
sẽ tachs thành mũ 50 tất cả mũ 2
nên nó là số chính phương