Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= 5+5^2+5^3+...+5^100
a,Số A là số nguyên tố hay hợp số?
b,Số A có phải là số chính phương không?

a; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)
A = 5.(1 + 5+ 5\(^2\) + ... + 5\(^{99}\))
A ⋮ 1; 5; A Vậy A là hợp số.
b; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)
A = 5 + (5\(^2\) + 5\(^3\) + ... + 5\(^{100}\))
A = 5 + 5\(^2\).(1 + 5 + 5\(^2\) +...+ 5\(^{98}\))
A ⋮ 5; A không chia hết cho 5\(^2\)
Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì sẽ chia hết cho bình phương của số nguyên tố đó.
a. Số A là số nguyên tố hay hợp số?
Đáp án: A là hợp số
b. Số A có phải là số chính phương không?
Đáp án: A không phải là số chính phương

a/ A luôn là hợp số vì A luôn chia hết cho 3
b/ <=> 144 = \(\frac{\left(2n+1+1\right).}{2}\) x( \(\frac{\left(2n+1-1\right)}{2}\) +1)
<=> n = 11

Gọi b là số tự nhiên đó.
Vì b chia cho 7 dư 5,chia cho 13 dư 4
=>b+9 chia hết cho 7
b+9 chia hết cho 13
=>b+9 chia hết cho 7.13=91
=>b chi cho 91 dư 91-9=82
=>điều phải chứng minh

Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............

Đặt 525 = a thì
\(A=\frac{a^5-1}{a-1}=\frac{\left(a-1\right)\left(a^4+a^3+a^2+a+1\right)}{a-1}=a^4+a^3+a^2+a+1\)
\(=\left(a^2+3a+1\right)^2-5a\left(a+1\right)^2\)
\(=\left(a^2+3a+1\right)^2-5^{26}\left(a+1\right)^2\)
\(=\)[a2 + 3a + 1 + 513 (a + 1)][a2 + 3a + 1 - 513 (a + 1)]
Đây là tích hai số khác 1 nên A là hợp số
\(A=\frac{5^{25.5}-1}{5^{25}-1}\)=\(\frac{a^5-1}{a-1}\) =\(\frac{\left(a-1\right)\left(a^4+a^3+a^2+a^1+1\right)}{a-1}\)=\(\left(a^4+a^3+a^2+a^1+1\right)\)
voi a=5^25
=> A co tan cung =4 luon chia het cho2 => A la hop so

a) A=302+150+826
Ta thấy các số hạng của A là các số chia hết cho 2
=> A là số chẵn lớn hơn 2 nên A là hợp số
b) B=15.19.137-225
Ta có tích 15.19.137 là số lẻ
=> B là số chẵn lớn hơn 2 nên B là hợp số
c) C=19.21.23+21.25.27
Ta thấy 19.21.23 và 21.25.27 là các số lẻ
=> C là số chẵn lớn hơn 2 nên C là hợp số
d) D=5+52+53+54
=5(1+5+52+53) chia hết cho 5
=> D là hợp số
a> hợp số vì số nào cũng chia hết cho 2
b>Hợp số vì có tận cùng bằng 0 chia hết cho 10
c>Hợp số vì chia hết cho 2
d>hợp số vì chia hết cho 5
Ta có:
\(A=5+5^2+5^3+...+5^{100}\)
\(\rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\rightarrow A=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(\rightarrow A=6.\left(5+5^3+...+5^{99}\right)⋮6\)
Vì A chia hết cho 6 nên A là hợp số.