Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath
b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
<=> n thuộc {0;4}
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
Đặt \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)
\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(A=\frac{7}{4}-\frac{100}{2^{100}}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)
Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(2B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)
\(B=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Rightarrow\)\(A=\frac{7}{4}-\frac{100}{2^{100}}+B=\frac{7}{4}-\frac{100}{2^{100}}+\frac{1}{2^2}-\frac{1}{2^{99}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=\frac{2^{101}-102}{2^{100}}\)
Vậy \(A=\frac{2^{101}-102}{2^{100}}\)
Chúc bạn học tốt ~
a) Tìm \(n\in N\), biết:
\(3.5^{2n+1}-3.25^n=300\)
b) Tìm x để:
\(f\left(x\right)=6x^{^{ }4}-2x^3+5=5\)
a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)
\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)
\(15\cdot25^n-3\cdot25^n=300\)
\(25^n\cdot12=300\)
\(25^n=25\)
\(\Rightarrow n=1\)
b)\(f\left(x\right)=6x^4-2x^3+5=5\)
\(6x^4-2x^3=0\)
\(6x^4=2x^3\)
\(3x^4=x^3\)
\(3x^4-x^3=0\)
\(x^3\left(3x-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc 3x-1=0
\(\Rightarrow x=0,3x=1\)
\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))
Vậy x=0
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
A=5+52+...+598+599+5100
=> 5A=5.(5+52+...+598+599+5100)
=52+53+...+599+5100+5101
=> 5A-A=(52+53+...+599+5100+5101)-(5+52+...+598+599+5100)
=> 4A= 5101-5
Mà 4A+5=5n
=> (5101-5)+5=5n
=> 5101-5+5=5n
=> 5101=5n
=> 101=n
=>n=101.
=>5A=5^101+5^100+5^99+...+5^2+5.
=>5A-A=5^101-5.
=>4A=5^101-5.
=>4A+5=5^101.
=>n=101.
k nha có j kb vs mk