Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$
$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$
$3(A-1)=4^{2022}-4$
$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)
\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)
\(=25\cdot4^{2022}⋮4^{2022}\)
có 1 cái nút hình tam giác với dấu chấm thang có ghi chữ báo cáo bạn thầy ko
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)
A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)
A=5+42.5+...+448.5A=5+42.5+...+448.5
A=5(1+42+...+448)A=5(1+42+...+448)
⇒A⋮5
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
k cho mik đi mik cảm ơn
A = 4 + 42 + 43 + 44 + ... + 42022
A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 42020 + 42021 + 42022 )
A = 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 42020( 1 + 4 + 42 )
A = 4 . 21 + 44 . 21 + ... + 42020 . 21
A = 21( 4 + 44 + ... + 42020 ) ⋮ 21 vì 21 ⋮ 21
Vậy A ⋮ 21 ⇒ A - 1 không chia hết cho 21