Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a) 12 - x= 1-(-5)
12 - x = 6
x= 12-6
x=6
b)| x+4|= 12
x+4 = \(\pm\)12
*x+4=12
x=8
*x+4= -12
x=-16
2/Tìm n
\(n-5⋮n+2\)
=> \(n+2-7⋮n+2\)
mà \(n+2⋮n+2\)
=> 7\(⋮\)n+2
=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
3/a)4.(-5)2 + 2.(-12)
= 2.2.(-5)2 + 2.(-12)
=2[2.25.(-12)]
=2.(-600)
=-1200
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
A=4+22+23+...+220
A=22+22+...+220
2A=2(22+22+...+220)
2A=23+23+...+221
2A-A=(23+23+...+221)-(22+22+...+220)
A=221-23+23=221
<=>221=2n-2
<=>21=n-2
<=>n=23
bạn ơi mình nhầm đề ,bạn giải lại cho mình nha Nguyễn Huy Thắng
Mình sẽ gửi link cho bạn qua tin nhắn
Câu 1:
\(A\in Z\Rightarrow6n-1⋮3n+2\)
\(\Rightarrow6n+4-5⋮3n+2\)
\(\Rightarrow2\left(3n+2\right)-5⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
đến đây tự lm nốt nhé
1. Để A có giá trị nguyên thì \(6n-1⋮3n+2\)
Ta có: \(\left\{{}\begin{matrix}6n-1⋮3n+2\\3n+2⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\2\left(3n+2\right)⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n+4⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n-1+5⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left(6n-1+5\right)-\left(6n-1\right)⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)\)
\(\Rightarrow3n+2\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow3n\in\left\{-7;\pm3;-1;\right\}\)
\(\Rightarrow n\in\left\{\pm1\right\}\)
Vậy để \(A\in Z\) thì n nhận các giá trị là: \(\pm1\)
A= 221
Đặt: \(B=1+2^1+2^2+....+2^{20}\)
\(\Rightarrow2B=2^1+2^2+....+2^{21}\)
Nên\(\Rightarrow B=2B-B=2^{21}-1\)
Có A=1+B=\(2^{21}\)
Vậy n=21