Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét các trường hợp
- Với x \(\ge\frac{1}{2}\)thì 2x-1\(\ge0\)nên | 2x -1 | = 2x-1 . Ta có :
\(A=2x-1-x+5=x+4\)
- Với x < \(\frac{1}{2}\) thì 2x - 1 < 0 nên | 2x -1 | =1 - 2x . Ta có :
\(A=1-2x-x+5=-3x+6\)
b) Trường hợp 1 : \(\hept{\begin{cases}x+4=4\\x\ge\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge\frac{1}{2}\end{cases}}}\)
=> Không tồn tại x
Trường họp 2 : \(\hept{\begin{cases}-3+6=4\\x< \frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\x< \frac{1}{2}\end{cases}}}\)
=> Không tồn tại x
Vậy ____
Ta có : \(f\left(x\right)=\left|x-1\right|-\left(2x-5\right)\)
Xét 2 TH:
+) Nếu \(\left|x-1\right|=x-1\)
=> \(f\left(x\right)=x-1-2x+5\)
=> \(f\left(x\right)=4-x\)
+) Nếu \(\left|x-1\right|=1-x\)
=> \(f\left(x\right)=1-x-2x+5\)
=> \(f\left(x\right)=6-3x\)
Vậy...
b) \(f\left(5\right)=\left|5-1\right|-\left(2.5-5\right)\)
=> \(f\left(5\right)=4-2=2\)
Vậy...
c) \(f\left(x\right)=0\)
=> \(\left|x-1\right|-\left(2x-5\right)=0\)
=> \(\left|x-1\right|=2x-5\)
Vì \(\left|x-1\right|\ge0\forall x\)
=> \(2x-5\ge0\)
=> \(x\ge\frac{5}{2}\)
=> \(x-1\ge\frac{5}{2}-1=\frac{3}{2}>0\)
=> \(\left|x-1\right|=x-1\)
=> \(x-1-2x+5=0\)
=> \(4-x=0\)
=> \(x=4\)
a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)
Thay \(a=\frac{1}{2};x=-3\), ta có :
\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)
b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)
\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)
Thay \(a=-3;b=-4;c=2;d=3\), ta có :
\(B=\left(-3\right).\left(-4\right).2.3=72\)
Do giá trị tuyệt đối \(2x^4+3x^2+1\)và giá trị tuyệt đói của \(-2x^4-x^2+1\)luôn \(\ge\)0 với mọi x ,y
nên A = \(2x^4+3x^2+1+2x^4+x^2-1\)
\(=4x^4+4x^2=4\left(x^4+x^2\right)\)
Do \(x^4+x^2\ge\)0 với mọi x
\(\Rightarrow\)\(4\left(x^4+x^2\right)\)\(\ge\)0 với mọi x
\(\Rightarrow\)A \(\ge\)0 với mọi x
\(\Rightarrow\) A không âm với mọi x (đpcm)
a;b)TH1:A=3x-4-2x+1=x-3=10\(\Rightarrow\)x=13