K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1) 
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b) 
thay vao(2) ta dc 
=3abc 

30 tháng 8 2017

Có a+b+c=0 nên (a+b+c)^3=0

a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6ab=0

a^3+b^3+c^3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Mà a+b+c=0 nên a^3+b^3+c^3=3abc(đpcm)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

\(a+b+c=0\)

=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)

=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

15 tháng 8 2018

1 ) Ta có :

\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)

\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)

\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)

2 ) Ta có :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)

\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)

\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)

15 tháng 8 2018

1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :

\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)

19 tháng 8 2016

Bài 1 :

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

Bài 2 : Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3-3abc=-c^3\) ( Vì \(a+b=-c\) )

\(\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 8 2016

Bài 1:

x2 +4x-y2+4

=(x2+4x+4)-y2

=(x+2)2-y2

=(x-y+2)(x+y+2)

Bài 2:

 a3+b3+c3 =  3abc

=>a3+b3+c3-3abc=0

=>[(a+b)3+c3]-3ab(a+b)-3abc=0

=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=0

=>(a+b+c)(a2+b2+c2-ac-bc-ab)=0

Từ a+b+c=0

=>0*(a2+b2+c2-ac-bc-ab)=0 (luôn đúng)

 

21 tháng 10 2015

\(gt\Rightarrow a^3+b^3+c^3-3abc=0\)

<=> \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

<=> \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

<=> \(\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ac+bc\right)-3ab\left(a+b+c\right)=0\)

<=> \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]=0\)

<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=> \(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

=> a + b+ c = 0 hoặc a = b = c 

5 tháng 7 2016

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)=0\)

Mà a+b+c=0\(\Rightarrow0.\left[\left(z+b\right)^2-\left(a+b\right)c+c^2\right]-3ab.0=0\Rightarrow0+0=0\)

 0+0=0 đúng suy ra \(a^3+b^3+c^3=3abc\)đúng với \(a+b+c=0\)

Bạn học tốt nha

1 cái T I C K nha mình cảm ơn

22 tháng 6 2017

Giả sử : a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức phụ ta có :

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 + ab + bc + ca) = 0 

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2+ab+bc+ca=0\end{cases}}\)(thõa mãn điều kiện đề bài cho)

=> Ta có điều cần chứng minh 

22 tháng 6 2017

huongkarry

* a + b + c = 0 <=> a + b = - c
a+b+c=0
\Leftrightarrow (a+b+c)^{3}=0
\Leftrightarrow a^{3}+b^{3}+c^{3}+3ab(a+b)+3(ab+ac)(a+b+c)=0
Mà a + b + c = 0 và a + b = -c
Thế vào ta được : 
a^{3}+b^{3}+c^{3}-3abc+0=0
\Leftrightarrow a^{3}+b^{3}+c^{3}=3abc  (đều phải chứng minh)

28 tháng 11 2016

Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(b+c+a\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà đẳng thức (a+b+c)(a2+b2+c2 - ab - bc ca ) = 0 đúng vì a+b+c = 0

=> \(a^3+b^3+c^3=3abc\)

28 tháng 11 2016

Ta có :

a3 + b3 + c3 = 3abc

↔ a3 + b3 + c3 - 3abc =0

↔ (a + b)3 - 3ab(a+b) + c3 - 3abc = 0

↔ (a + b)3 - 3ab(a + b + c) + c3 = 0

↔ [ (a + b)3 + c3 ] - 3ab(a + b + c) = 0

↔ (a + b + c) [ (a + b)2 + c2 - c(a + b) ] - 3ab(a + b + c) = 0

↔ (a + b + c) [ (a + b)2 + c2 - c(a + b) - 3ab ] = 0

Mà a + b + c = 0 → đpcm

Vậy a3 + b3 + c3 = 3abc