Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)(vì \(a+b+c\ne0\))
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2\left(a^2+b^2+c^2\right)}=\frac{1}{3}\)
* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.
Câu a)
Theo hằng đẳng thức đáng nhớ ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)
\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)
\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)
\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)
Do đó:
\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
Câu b)
\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)
Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)
\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)
Mặt khác xét mẫu số:
\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)
\(=2(x^2+y^2+z^2+xy+yz-xz)\)
Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)
Câu c) Sử dụng kết quả (*) của phần a:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Và mẫu số:
\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)
Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)
Câu d)
Xét tử số:
\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)
\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)
\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)
\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)
Xét mẫu số:
\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)
\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)
\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)
\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)
\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)
\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)
\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)
Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)
Câu e)
Theo phần d ta có:
\(TS=(a-b)(b-c)(a-c)\)
\(MS=ab^2-ac^2-b^3+bc^2\)
\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)
Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)
a3 + b3 + c3 = 3abc
⇔ ( a3 + b3 ) + c3 - 3abc = 0
⇔ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇔ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇔ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇔ ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
⇔ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇔ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Từ đây tự làm tiếp nhé :))
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)[\left(a+b+c\right)^2-3ac-3bc-3ab]=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Để \(N\)có nghĩa thì \(\left(a+b+c\right)^2\ne0\)
Hay \(a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall c,a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow a=b=c\)
Thay \(a=b=c\)vào \(N\), ta có : \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Vậy \(N=\frac{1}{3}\)
a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right)z+z^2\right]+3xy\left(x-y+z\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{2\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)
\(=\dfrac{\left(x+y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz-2zx\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)
\(=\dfrac{\left(x-y+z\right)\left[\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)
\(=\dfrac{\left(x-y+z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}=\dfrac{x-y+z}{2}\)
ta có: \(a^3+b^3+c^3=3abc\)
=>\(a^3+b^3+c^3-3abc=0\)
=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-3ab+c^2\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)=0\)
=>\(\left(a+b+c\right)2\left(a^2+b^2+c^2-ac-bc-ab\right)=0\)
=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a=b=c
N=\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)