Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)
Tương tự:
\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)
Cộng theo vế:
\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)
Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Lời giải:
Đặt vế trái là $A$
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)
Hoàn toàn TT:
\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)
\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)
Cộng theo vế:
\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)
\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)
\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)
\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)
\(=\left(-1\right)^5+\left(-2x-2\right)^6\)
Xong
5) Lợi dụng AM-GM :v
\(a^4+a^4+a^4+b^4\ge4a^3b\)
\(b^4+b^4+b^4+a^4\ge4b^3a\)
\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)
\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2+b^2}{ab\left(a+b\right)^3}\ge\dfrac{2ab}{ab\left(a+b\right)^3}=\dfrac{2}{\left(a+b\right)^3}\\\dfrac{b^2+c^2}{bc\left(b+c\right)^3}\ge\dfrac{2bc}{bc\left(b+c\right)^3}=\dfrac{2}{\left(b+c\right)^3}\\\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{2ca}{ca\left(c+a\right)^3}=\dfrac{2}{\left(c+a\right)^3}\end{matrix}\right.\)
\(\Rightarrow VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)
Chứng minh rằng \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{9}{8}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}2ab\le a^2+b^2\\2bc\le b^2+c^2\\2ca\le c^2+a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab\le a^2-ab+b^2\\bc\le b^2-bc+c^2\\ca\le c^2-ca+a^2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ab\left(a+b\right)\le\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\\bc\left(b+c\right)\le\left(b+c\right)\left(b^2-bc+c^2\right)=b^3+c^3\\ca\left(c+a\right)\le\left(c+a\right)\left(c^2-ca+a^2\right)=c^3+a^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3ab\left(a+b\right)\le3\left(a^3+b^3\right)\\3bc\left(b+c\right)\le3\left(b^3+c^3\right)\\3ca\left(c+a\right)\le3\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+3ab\left(a+b\right)+b^3\le4\left(a^3+b^3\right)\\b^3+3bc\left(b+c\right)+c^3\le4\left(b^3+c^3\right)\\c^3+3ca\left(c+a\right)+a^3\le4\left(c^3+a^3\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^3\le4\left(a^3+b^3\right)\\\left(b+c\right)^3\le4\left(b^3+c^3\right)\\\left(c+a\right)^3\le4\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left(a+b\right)^3}\ge\dfrac{1}{4\left(a^3+b^3\right)}\\\dfrac{1}{\left(b+c\right)^3}\ge\dfrac{1}{4\left(b^3+c^3\right)}\\\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4\left(c^3+a^3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\)
Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\) ( đpcm )
Vậy \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)
Mà \(VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab\left(a+b\right)^3}+\dfrac{b^2+c^2}{bc\left(b+c\right)^3}+\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{9}{4}\) ( đpcm )
đề thiếu số dương à ? hay đủ