Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a< b< c\)là ba nghiệm của phương trình \(x^3-3x+1=0\). Chứng minh rằng:
\(a^2-c=b^2-a=c^2-b=2\)
*\(a^3+b^3=2\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)
Vì \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Nên a + b > 0
*Vì a + b > 0
\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow4.2\ge\left(a+b\right)^3\)
\(\Leftrightarrow2\ge a+b\)
Vậy .....
\(a^3+b^3=2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\Leftrightarrow\left(a+b\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]=2.\)
Suy ra : a+b > 0
Cho \(a^3< 0\) ;\(abc>0\) . chứng minh : \(\frac{a^2}{3}\)+ \(b^3\)+\(c^3\)\(>\)\(ab\)+\(bc\)+\(ca\)
bạn xem lại cái đề được không
với a=1/2; b=7/10; c=13/10 thì bất đẳng thức trên không đúng
Sửa đề: a+b+c>=3
Hay 6<= 2(a+b+c)
Theo BĐT Cauchy-Schwarz dạng Engel
\(\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\ge\frac{3}{3}=1\)
p/s: ko chắc lắm bạn ktra giúp mình nha