Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3^1 + 3^2 + ... + 3^99
3A = 3 + 3^2+ 3^3 + ... + 3^100
3A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
3A = 3 ( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99 ( 1 + 3 )
3A = 3 . 4 + 3^3 . 4 + ... + 3^99 . 4
3A = 4 . ( 3 + 3^3 + 3^99 ) \(⋮\)4
help mình!!!!!plz
https://olm.vn/hoi-dap/detail/258202696527.html
https://olm.vn/hoi-dap/detail/258180737788.html
ta có: A = 3 + 3^2 + ...+ 3^20 ( có 20 số hạng)
A = (3+3^2) + ...+ (3^19+3^20)
A = 3.(1+3) + ...+ 3^19.(1+3)
A = 3.4 + ...+ 3^19.4
A = 4.(3+...+3^19) chia hết cho 4
phần còn lại làm tương tự nha
\(3^1+3^2+...+3^{99}+3^{100}\)
= \(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
= \(3^1.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{99}.\left(1+3\right)\)
= \(3^1.4+3^3.4+...+3^{99}.4\)
= \(4.\left(3^1+3^3+...+3^{99}\right)\) chia hết cho 4
Nên \(3^1+3^2+...+3^{99}+3^{100}\) chia hết cho 4
C=3(1+3+9+27)+....+3^97(1+3+9+27)
C=3.40+...+3^97.40
C=40(3+...+3^97) chia hết cho 40
=> C chia hết cho 40(ĐPCM)
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=3.\left(1+3+9+27\right)+...+3^{97}.\left(1+3+9+27\right)\)
\(=3.40+3^5.40+...+3^{97}.40\)
\(=40.\left(3+3^5+...+3^{97}\right)\) chia hết cho 40
=> A chia hết cho 40
=> đpcm.