\(A=3+3^2+3^3+...+3^{29}\) và \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

Ta có :

\(A=3+3^2+3^3+........+3^{29}\)

\(\Rightarrow3A=3^2+3^3+...............+3^{29}+3^{30}\)

\(\Rightarrow3A-A=\left(3^2+3^3+........+3^{30}\right)-\left(3+3^3+................+3^{29}\right)\)

\(\Rightarrow2A=3^{30}-3\)

\(\Rightarrow A=\dfrac{3^{30}-3}{2}\)

Lại có :

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{29}}\)

\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^{28}}\)

\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{28}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^{29}}\right)\)

\(\Rightarrow2B=1-\dfrac{1}{3^{29}}\)

\(\Rightarrow B=\dfrac{1-\dfrac{1}{3^{29}}}{2}\)

\(\dfrac{\Rightarrow A}{B}=\dfrac{\dfrac{3^{30}-3}{2}}{\dfrac{1-\dfrac{1}{3^{29}}}{2}}\)

17 tháng 6 2017

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{29}}\)

\(3^{30}.B=3^{29}+3^{28}+...+3=A\)

\(\dfrac{A}{B}=\dfrac{3^{30}.B}{B}=3^{30}\)

28 tháng 4 2017

a) \(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)

\(\Leftrightarrow\dfrac{x-1}{\left(x-2\right)\left(x+2\right)}=-\dfrac{3}{\left(x-2\right)\left(x+2\right)}\)

\(ĐKXĐ:\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow x-1=-3\)

\(\Leftrightarrow x=1-3=-2\)

Vậy: \(x=-2\)

b) \(\dfrac{1}{x-1}-\dfrac{7}{x-2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\left(-\dfrac{7}{2-x}\right)=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2-x}{\left(x-1\right)\left(2-x\right)}+\dfrac{7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\Rightarrow2-x+7x-7=1\)

\(\Leftrightarrow-x+7x=1-2+7=6\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\)

Vậy: \(x=1\)

c) \(\dfrac{2x+3}{2x-3}-\dfrac{3}{4x-6}=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{2x+3}{2x-3}-\dfrac{3}{2\left(2x-3\right)}=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{10\left(2x+3\right)}{10\left(2x-3\right)}-\dfrac{3.5}{10\left(2x-3\right)}=\dfrac{4\left(2x-3\right)}{10\left(2x-3\right)}\)

\(ĐKXĐ:x\ne\dfrac{3}{2}\)

\(\Leftrightarrow10\left(2x+3\right)-15=4\left(2x-3\right)\)

\(\Leftrightarrow20x+30-15=8x-12\)

\(\Leftrightarrow20x-8x=15-12-30\)

\(\Leftrightarrow12x=-27\)

\(\Leftrightarrow x=-\dfrac{27}{12}=-\dfrac{9}{4}\)

Vậy: \(x=-\dfrac{9}{4}\)

d) \(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\)

\(\Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\)

\(\Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}=\dfrac{x+60}{43}-\dfrac{x+60}{45}\)

\(\Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}\)

\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\)

\(\Leftrightarrow x+60=0\)\(\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\)

\(\Leftrightarrow x=-60\)

Vậy: \(x=-60\)

_Good luck to you_

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

18 tháng 2 2019

1)\(-\dfrac{4x-3}{x-5}=\dfrac{29}{3}\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\)

\(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\Leftrightarrow9-12x=29x-145\)

\(\Leftrightarrow29x+12x=9+145\Leftrightarrow41x=154\Leftrightarrow x=\dfrac{154}{41}\)

2)\(\dfrac{2x-1}{5-3x}=2\Leftrightarrow2\left(2x-1\right)=5-3x\)

\(\Leftrightarrow4x-2=5-3x\)

\(\Leftrightarrow4x+3x=5+2\Leftrightarrow7x=7\Leftrightarrow x=1\)

3)\(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)

\(\Rightarrow4x-5=2x-2+x\)

\(\Leftrightarrow4x-2x-x=-2+5\)

\(\Leftrightarrow x=3\)

19 tháng 2 2019

\(1)-\dfrac{4x-3}{x-5}=\dfrac{29}{3} (x \neq 5) \\\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\) \(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\\\Leftrightarrow9-12x=29x-145\) \(\Leftrightarrow29x+12x=9+145\\\Leftrightarrow41x=154\\\Leftrightarrow x=\dfrac{154}{41}(TM)\)

Vậy \(S=\left\{\dfrac{154}{41}\right\}\)

\(2)\dfrac{2x-1}{5-3x}=2 (x \neq \dfrac{5}{3}) \)

\(\Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=10+1\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\dfrac{11}{8}\left(TM\right)\)

Vậy \(S=\left\{\dfrac{11}{8}\right\}\)

\(3)\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1} (x \neq 1) \\\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\) \(\Leftrightarrow4x-5=2x-2+x\) \(\Leftrightarrow4x-2x-x=-2+5\) \(\Leftrightarrow x=3(TM)\)

Vậy \(S=\left\{3\right\}\)

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

18 tháng 6 2018

Giải:

a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)

\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)

\(=\dfrac{21}{6}+\dfrac{4}{6}\)

\(=\dfrac{1}{6}\left(21+4\right)\)

\(=\dfrac{25}{6}\)

b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.2\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{292}{145}+\dfrac{2}{145}\)

\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}.146+1\right)\)

\(=\dfrac{2}{145}\left(-\dfrac{5684}{9}\right)\)

\(=-\dfrac{392}{45}\)

Vậy ...

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

19 tháng 6 2018

Giải:

a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)

\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)

\(=\dfrac{21}{6}+\dfrac{4}{6}\)

\(=\dfrac{1}{6}\left(21+4\right)\)

\(=\dfrac{1}{6}.25=\dfrac{25}{6}\)

b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}+1\right)\)

\(=\dfrac{2}{145}\left(-\dfrac{29}{9}\right)\)

\(=-\dfrac{2}{45}\)

Vậy ...

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks