Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)
\(\Leftrightarrow\dfrac{x-1}{\left(x-2\right)\left(x+2\right)}=-\dfrac{3}{\left(x-2\right)\left(x+2\right)}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow x-1=-3\)
\(\Leftrightarrow x=1-3=-2\)
Vậy: \(x=-2\)
b) \(\dfrac{1}{x-1}-\dfrac{7}{x-2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\left(-\dfrac{7}{2-x}\right)=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2-x}{\left(x-1\right)\left(2-x\right)}+\dfrac{7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Rightarrow2-x+7x-7=1\)
\(\Leftrightarrow-x+7x=1-2+7=6\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
c) \(\dfrac{2x+3}{2x-3}-\dfrac{3}{4x-6}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{2x+3}{2x-3}-\dfrac{3}{2\left(2x-3\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{10\left(2x+3\right)}{10\left(2x-3\right)}-\dfrac{3.5}{10\left(2x-3\right)}=\dfrac{4\left(2x-3\right)}{10\left(2x-3\right)}\)
\(ĐKXĐ:x\ne\dfrac{3}{2}\)
\(\Leftrightarrow10\left(2x+3\right)-15=4\left(2x-3\right)\)
\(\Leftrightarrow20x+30-15=8x-12\)
\(\Leftrightarrow20x-8x=15-12-30\)
\(\Leftrightarrow12x=-27\)
\(\Leftrightarrow x=-\dfrac{27}{12}=-\dfrac{9}{4}\)
Vậy: \(x=-\dfrac{9}{4}\)
d) \(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\)
\(\Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}=\dfrac{x+60}{43}-\dfrac{x+60}{45}\)
\(\Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\)
\(\Leftrightarrow x+60=0\) vì \(\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\)
\(\Leftrightarrow x=-60\)
Vậy: \(x=-60\)
_Good luck to you_
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
1)\(-\dfrac{4x-3}{x-5}=\dfrac{29}{3}\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\Leftrightarrow9-12x=29x-145\)
\(\Leftrightarrow29x+12x=9+145\Leftrightarrow41x=154\Leftrightarrow x=\dfrac{154}{41}\)
2)\(\dfrac{2x-1}{5-3x}=2\Leftrightarrow2\left(2x-1\right)=5-3x\)
\(\Leftrightarrow4x-2=5-3x\)
\(\Leftrightarrow4x+3x=5+2\Leftrightarrow7x=7\Leftrightarrow x=1\)
3)\(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Rightarrow4x-5=2x-2+x\)
\(\Leftrightarrow4x-2x-x=-2+5\)
\(\Leftrightarrow x=3\)
\(1)-\dfrac{4x-3}{x-5}=\dfrac{29}{3} (x \neq 5) \\\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\) \(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\\\Leftrightarrow9-12x=29x-145\) \(\Leftrightarrow29x+12x=9+145\\\Leftrightarrow41x=154\\\Leftrightarrow x=\dfrac{154}{41}(TM)\)
Vậy \(S=\left\{\dfrac{154}{41}\right\}\)
\(2)\dfrac{2x-1}{5-3x}=2 (x \neq \dfrac{5}{3}) \)
\(\Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=10+1\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\dfrac{11}{8}\left(TM\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3)\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1} (x \neq 1) \\\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\) \(\Leftrightarrow4x-5=2x-2+x\) \(\Leftrightarrow4x-2x-x=-2+5\) \(\Leftrightarrow x=3(TM)\)
Vậy \(S=\left\{3\right\}\)
Giải:
a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)
\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)
\(=\dfrac{21}{6}+\dfrac{4}{6}\)
\(=\dfrac{1}{6}\left(21+4\right)\)
\(=\dfrac{25}{6}\)
b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.2\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{292}{145}+\dfrac{2}{145}\)
\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}.146+1\right)\)
\(=\dfrac{2}{145}\left(-\dfrac{5684}{9}\right)\)
\(=-\dfrac{392}{45}\)
Vậy ...
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
Giải:
a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)
\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)
\(=\dfrac{21}{6}+\dfrac{4}{6}\)
\(=\dfrac{1}{6}\left(21+4\right)\)
\(=\dfrac{1}{6}.25=\dfrac{25}{6}\)
b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}+1\right)\)
\(=\dfrac{2}{145}\left(-\dfrac{29}{9}\right)\)
\(=-\dfrac{2}{45}\)
Vậy ...
a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)
\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
Ta có :
\(A=3+3^2+3^3+........+3^{29}\)
\(\Rightarrow3A=3^2+3^3+...............+3^{29}+3^{30}\)
\(\Rightarrow3A-A=\left(3^2+3^3+........+3^{30}\right)-\left(3+3^3+................+3^{29}\right)\)
\(\Rightarrow2A=3^{30}-3\)
\(\Rightarrow A=\dfrac{3^{30}-3}{2}\)
Lại có :
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{29}}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^{28}}\)
\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{28}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^{29}}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^{29}}\)
\(\Rightarrow B=\dfrac{1-\dfrac{1}{3^{29}}}{2}\)
\(\dfrac{\Rightarrow A}{B}=\dfrac{\dfrac{3^{30}-3}{2}}{\dfrac{1-\dfrac{1}{3^{29}}}{2}}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{29}}\)
\(3^{30}.B=3^{29}+3^{28}+...+3=A\)
\(\dfrac{A}{B}=\dfrac{3^{30}.B}{B}=3^{30}\)