Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2018}.\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+...+2^{2018}\right)\)
\(\Leftrightarrow A=2^{2019}-1\)
Mà B=??.. tự lm típ
A= 1+2^1+2+3+...+2018
B=2^2019
=>A>B(1+2^1+2+3+4+...+2018>2^2019)
a ) A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = ( 3 + 32 + 33 ) + ... + ( 32017 + 32018 + 32019 )
A = 3 . ( 1 + 3 + 32 ) + ... + 32017 . ( 1 + 3 + 32 )
A = 3 . 13 + ... + 32017 . 13
A = 13 . ( 3 + ... + 32017 ) \(⋮\)13
Do đó : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019 \(⋮\)13
b ) Ta có : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = 3 . ( 1 + 3 + 32 + ... + 32016 + 32017 + 32018 ) \(⋮\)3 ( 1 )
Ta lại có : A = 3 + 32 + 33 + ... + 32018 + 32019
A = 3 + 32 . ( 1 + 32 + 33 + ... + 32017 ) chia cho 9, dư 3 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là bình phương của một số tự nhiên
A = 3 + 32 + 33 +...+32019
-> 3A = 3 (3 + 32 + 33 +...+32019)
-> 3A = 32 + 33 + 34 +...+32020
-> 3A - A = (32 + 33 + 34 +...+ 32020) - (3 + 32 + 33 +...+32019)
-> 2A = 32020 - 3
\(\rightarrow A=\frac{3^{2020}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\frac{3^{2020}-3}{2}+3=3^n\)
\(\Rightarrow3^{2020}-3+3=3^n\)
=> 32020 = 3n => n = 2020
Trl:
\(A=3+3^2+3^3+...+3^{2018}\)
\(3A=3^2+3^3+3^4+...+3^{2017}+3^{2018}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}\)
\(\Rightarrow n=101\)
Vậy n = 101
Hc tốt
3.
\(2^x=256+2^y\\ \Rightarrow2^x-2^y=256\\ \Rightarrow2^y\left(2^{x-y}-1\right)=2^8\)
\(\Rightarrow2^y;2^{x-y}-1\in U\left(2^8\right)\)
Mà \(2^{x-y}-1\) là số lẻ
\(\Rightarrow2^{x-y}-1=1\\ \Rightarrow\left\{{}\begin{matrix}2^y=2^8\\2^{x-y}=2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}y=8\\x-y=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}y=8\\x=9\end{matrix}\right.\)
4.
Gọi d là ƯCLN(2n+5;3n+7)
\(\Rightarrow\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\\ \Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
=> đpcm
Nguyễn Huy Tú lê thị hương giang Hồng Phúc Nguyễn
Nguyễn Thanh Hằng Akai Haruma Nam Nguyễn Hà Nam Phan Đình
Aki Tsuki
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
\(A=1+3+3^2+.....+3^{2018}\)
\(\Leftrightarrow3A=3+3^2+...........+3^{2018}+3^{2019}\)
\(\Leftrightarrow3A-A=\left(3+3^2+.........+3^{2019}\right)-\left(1+3+......+3^{2018}\right)\)
\(\Leftrightarrow2A=2^{2019}-1\)
Mà \(B=2^{2019}\)
\(\Leftrightarrow2A;B\) là 2 số tự nhiên liên tiếp
thank you very much