Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)
a) Ta có : \(\frac{-3}{100}< 0< \frac{2}{3}\)
\(\Rightarrow\frac{-3}{100}< \frac{2}{3}\)
b) Ta có : \(\frac{267}{268}< 1< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{268}< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
c) Ta có : \(\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(\frac{2018.2019-1}{2018.2019}=\frac{2018.2019}{2018.2019}-\frac{1}{2018.2019}=1-\frac{1}{2018.2019}\)
mà \(2017.2018< 2018.2019\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)
d) Ta có : \(\frac{2017.2018}{2017.2018+1}=\frac{2017.2018+1}{2017.2018+1}-\frac{1}{2017.2018+1}=1-\frac{1}{2017.2018+1}\)
\(\frac{2018.2019}{2018.2019+1}=\frac{2018.2019+1}{2018.2019+1}-\frac{1}{2018.2019+1}=1-\frac{1}{2018.2019+1}\)
mà \(2017.2018+1< 2018.2019+1\)
\(\Rightarrow\frac{1}{2017.2018+1}>\frac{1}{2018.2019+1}\)
\(\Rightarrow1-\frac{1}{2017.2018+1}< 1-\frac{1}{2018.2019+1}\)
\(\Rightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}\)
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
A = 30 + 31 + 32 + ... + 32017
3A = 31 + 32 + 33 + ... + 32018
3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)
2A = 32018 - 30
Ta thấy: 32018 - 30 < 32018 \(\Rightarrow\) 2A < B. \(\Rightarrow\) A < B