Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(5\left(x^2\right)+7x+2\)
\(\Leftrightarrow5x^2+7x+2=0\)
\(\Leftrightarrow5x^2+5x+2x+2=0\)
\(\Leftrightarrow\left(5x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=-1\end{matrix}\right.\)
Vậy .............
b ) \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
\(\Leftrightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
Vì \(\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)\ne0\)
Ta có : \(x+18=0\Leftrightarrow x=-18\)
Vậy ......
c ) \(\dfrac{x-1}{x-3}=\dfrac{x-4}{x-7}\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x-x+7=x^2-4x-3x+12\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy ..
1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)
\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)
\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)
\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)
\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)
\(a)\dfrac{1}{3}x+\dfrac{2}{5}\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
\(\Leftrightarrow x\left(\dfrac{5}{15}+\dfrac{6}{15}\right)=\dfrac{-2}{5}\)
\(\Leftrightarrow x.\dfrac{11}{15}=\dfrac{-2}{5}\)
\(\Leftrightarrow x=\dfrac{-2}{5}.\dfrac{15}{11}\)
\(\Leftrightarrow x=\dfrac{-6}{11}\)
Cách tiểu học :
a) \(3\frac{9}{10}>2\frac{9}{10}\) ( Vì phần nguyên 3 > 2, phần phân số bằng nhau )
b) \(5\frac{1}{10}=\frac{51}{10}\), \(2\frac{9}{10}=\frac{29}{10}\) mà \(\frac{51}{10}>\frac{29}{10}\)
nên : \(5\frac{1}{10}>2\frac{9}{10}\)
c) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )
d) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )
Ta có : A = 30 + 31 + 32 + ...+351
= (30 + 31) + (32 + 33) + ... + (350 + 351)
= (30 + 31) + 32.(30 + 31) + ... + 350.(30 + 31)
= 4 + 32 . 4 + ... + 350.4
= 4.(1 + 32 + ... + 350)
= 2.2.(1 + 32 + ... + 350) \(⋮\)2
=> A \(⋮\)2
\(A=3^0+3^1+...+3^{51}=\left(3^0+3^1\right)+\left(3^2+3^3\right)+...+\left(3^{50}+3^{51}\right)\)
\(A=\left(3^0+3^1\right)\left(1+3^2+...+3^{50}\right)=4\left(1+3^2+...+3^{50}\right)⋮2\)