\(a^3-3ab^2=5\)    và    \(b^3-3a^2b=10\)

trính giá...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(\hept{\begin{cases}\left(a^3-3ab^2\right)^2=25\\\left(b^3-3a^2b\right)^2=100\end{cases}}\Leftrightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=25\\b^6-6a^2b^4+9a^4b^2=100\end{cases}}\)

Cộng 2 đẳng thức lại ta được:

\(a^6+3a^4b^2+3a^2b^4+b^6=125\Leftrightarrow\left(a^2+b^2\right)^3=125\Leftrightarrow a^2+b^2=5\)

\(\Rightarrow P=2018\left(a^2+b^2\right)=2018.5=...\)

27 tháng 12 2018

Ta có : \(a^3-3ab^2=5\)

\(\Rightarrow\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4=25\)

Và \(b^3-3a^2b=10\)

\(\Rightarrow\left(b^3-3a^2b\right)^2=b^6-6a^4b^2+9a^4b^2=100\)

Suy ra : \(a^6++3a^2b^4+3a^4b^2+b^6=125\)

Hoặc : \(\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

Do đó : \(P=2018a^2+2018b^2=2018\left(a^2+b^2\right)=2018.5=10090\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

13 tháng 8 2018

1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)

26 tháng 12 2017

Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)

\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)

\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)

\(< =>\left(a^2+b^2\right)^3=125\)

\(=>a^2+b^2=5\)

5 tháng 3 2019

Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)

                                   \(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)

                                   \(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

                                   \(=5^2+10^2\)

                                    \(=125\)

\(\Rightarrow S^3=125\)

\(\Rightarrow S=5\)

8 tháng 4 2019

Ta có : \(a^3-3ab^2=5\Rightarrow\left(a^3-3ab^2\right)^2\)\(=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

            \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\)\(\Rightarrow b^6-6a^2b^4+9a^4b^2=100\)

Cộng hai vế ta được : 

\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=5^3\)

\(\Rightarrow a^2+b^2=5\)

\(\Rightarrow\frac{a^2+b^2}{2018}=\frac{5}{2018}\)

Chúc bạn học tốt ^^

1 tháng 5 2020

what đè he

29 tháng 3 2020

+) a3 - 3ab2 = 5 \(\Leftrightarrow\) (a3 - 3ab2)2 = 25 \(\Leftrightarrow\) a6 - 6a4b2 + 9a2b4 = 25

+) b3 - 3a2b = 10 \(\Leftrightarrow\) (b3 - 3a2b)2 = 100 \(\Leftrightarrow\) b6 - 6a2b4 + 9a4b2 = 100

\(\Leftrightarrow\) a6 + b6 + 3a2b4 + 3a4b2 = 125

\(\Leftrightarrow\) (a2 + b2)3 = 125

\(\Leftrightarrow\) a2 + b2 = 5

Ta có:

S = 2019a2 + 2019b2

= 2019(a2 + b2)

= 2019 . 5

= 10095

Vậy S = 10095

Chúc bạn học tốt!

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Lời giải:

\(2a-b=5\Rightarrow b=2a-5\Rightarrow 2b=4a-10\)

\(\Rightarrow 7a-2b=7a-(4a-10)=3a+10\)

\(\Rightarrow \frac{7a-2b}{3a+10}=\frac{3a+10}{3a+10}=1\)

Lại có:

\(2a-b=5\Rightarrow 2a=b+5\Rightarrow 4a=2b+10\)

\(\Rightarrow 7b-4a=7b-(2b+10)=5b-10\)

\(\Rightarrow \frac{7b-4a}{15b-30}=\frac{5b-10}{15b-30}=\frac{5b-10}{3(5b-10)}=\frac{1}{3}\)

Vậy: \(A=1-\frac{1}{3}=\frac{2}{3}\)

10 tháng 2 2019

\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)

\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)

\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)