K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Có a3-3ab2=10=>(a3-3ab2)2=100(1)

Có b3-3a2b=5=>(b3-3a2b)2=25(2)

Cộng (1) và (2)

=>(a3-3ab2)2+(b3-3a2b)2=100+25

<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125

<=>a6+3a2b4+3a4b2+b6=125

<=>(a2+b2)3=125

<=>a2+b2=5

vậy a2+b2=5

11 tháng 7 2015

(a+ b)3 = a3 + 3a2b + 3ab2 + b3 = (a3 + 3ab2) + (b3 + 3a2b) = 2006 + 2005 = 4011

=> a + b = \(\sqrt[3]{4011}\)

(a - b)3 = a3 - 3a2b + 3ab2 - b3 = (a3 + 3ab2) - (b3 + 3a2b) = 2006 - 2005 = 1

=> a - b = 1

=> P = a2 - b2 = (a - b)(a + b) = \(\sqrt[3]{4011}\)

11 tháng 7 2015

trời ơi mik cũng chán quá đây nè giờ chẳng muốn giải gì hết

10 tháng 9 2018

\(a^2+b^2+3ab⋮5\) 

\(\Leftrightarrow6a^2+12ab+6b^2⋮5\) 

\(\Leftrightarrow\left(2a+3b\right)\left(3a+2b\right)⋮5\) 

Giả sử \(2a+3b⋮5\) (1)

Mà \(9\left(2a+3b\right)-\left(3a+2b\right)=15a+25b⋮5\) 

\(\Rightarrow3a+2b⋮5\) (2)

Mặt khác 5 là số nguyên tố (3) 

Từ (1)(2)(3) \(\Rightarrow\left(2a+3b\right)\left(3a+2b\right)⋮25\)

4 tháng 7 2019

ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.

Ta có : (a - 3ab2)2 = a6 - 6a4b+ 9a2b4 .

               (b3 - 3a2b)= b- 6a2b4 + 9a4b.

Ta lại có : (a- 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b + 3a2b4 + b6  .

             <=> 2332 + 2010= (a2 + b2).

          <=> a2 + b\(\sqrt[3]{233^2+2010^2}\).

           

NV
25 tháng 4 2019

\(a^3-3ab^2=5\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

\(b^3-3a^2b=10\Rightarrow b^6-6a^2b^4+9a^4b^2=100\)

Cộng vế với vế:

\(a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Leftrightarrow\left(a^2+b^2\right)^3=125\)

\(\Rightarrow a^2+b^2=5\)

\(\Rightarrow S=10090\)

25 tháng 4 2019

cảm ơn nhìu lắm nha <3

24 tháng 7 2015

\(a^3-3ab^2=19\Rightarrow\left(a^3-3ab^2\right)^2=361\)

\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=361\left(1\right)\)

\(b^3-3a^2b=98\Rightarrow\left(b^3-3a^2b\right)^2=9604\)

\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=9604\left(2\right)\)

\(\text{Công 2 vế (1) và (2) ta được :}\)

\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=9956\)

\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=9956\)

\(\Leftrightarrow\left(a^2+b^2\right)^3=9956\)

\(\Leftrightarrow a^2+b^2=\sqrt[3]{9956}\)

18 tháng 11 2019

tu lam 

24 tháng 4 2018

\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)

PS: Còn cách dùng holder nữa mà lười quá

24 tháng 4 2018

holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath