Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
a) \(\left(2x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) \(\left(2x-3\right)\left(x+2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}2x-3>0;x+2>0\\2x-3< 0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
c) \(\left(2x-3\right)\left(x+2\right)< 0\)
\(\Rightarrow\begin{cases}2x-3>0;x+2< 0\\2x-3< 0;x+2>0\end{cases}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2};x< -2\left(\text{vô lý}\right)\\\frac{3}{2}>x>-2\end{cases}}\)
Vậy \(\frac{3}{2}>x>-2\)
a, A = (2x - 3)(x + 2) = 0
<=> (2x - 3) = 0 hoặc (x + 2) = 0
<=> 2x = 3 hoặc x = -2
<=> x = 3/2 hoặc x = -2
b, A = (2x - 3)(x + 2) > 0
<=> (2x -3) và (x + 2) cùng dấu
- TH1: 2x - 3 > 0 và x + 2 > 0
=> 2x > 3 và x > -2
=> x > 3/2 và x > - 2
Vậy x > 3/2
- TH2: 2x - 3 < 0 và x + 2 < 0
=> 2x < 3 và x < -2
=> x < 3/2 và x < -2
Vậy x < -2
c, A = (2x - 3)(x + 2) < 0
<=> (2x - 3) và (x + 2) trái dấu
- TH1: 2x - 3 < 0 và x + 2 > 0
=> 2x < 3 và x > -2
=> x < 3/2 và x > -2
=> -2 < x < 3/2
- TH2: 2x - 3 > 0 và x + 2 < 0
=> 2x > 3 và x < -2
=> x > 3/2 và x < -2 (vô lí)
Vậy -2 < x < 3/2
a) (x+2)(x-3)<0
Để (x+2)(x-3)<0 <=> x+2 và x-3 trái dấu
Mà x+2 > x-3 => x+2> 0 và x-3 <0
=> x>-2 và x < 3
Vậy -2 < x < 3
b )4(3x+1)(5-2x)>0
Vì 4 > 0 , Để 4(3x+1)(5-2x)>0 <=> 3x+1 > 0 và 5-2x>0
<=> x>-1/3 và x < 5/2
Vậy -1/3 < x < 5/2
Điều kiện x ≠ -5
a, Để A > 0
Th1: \(\hept{\begin{cases}2x-4< 0\\x+5< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 4\\x< -5\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -5\end{cases}}\Rightarrow x< -5\)
Th2: \(\hept{\begin{cases}2x-4>0\\x+5>0\end{cases}\Rightarrow}\hept{\begin{cases}2x>4\\x>-5\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x>-5\end{cases}\Rightarrow}x>2\)
b, Để A < 0
Th1:\(\hept{\begin{cases}2x-4>0\\x+5< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x>4\\x< -5\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< -5\end{cases}}\)(Vô lý)
Th2: \(\hept{\begin{cases}2x-4< 0\\x+5>0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 4\\x>-5\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>-5\end{cases}\Rightarrow}-5< x< 2\)
c, Để A = 0
<=> 2x - 4 = 0
<=> 2x = 4
<=> x = 2