Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a+\dfrac{1}{a}=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\)
BBĐT AM-GM
\(=>\dfrac{a}{4}+\dfrac{1}{a}\ge2\sqrt{\dfrac{1}{4}}=1\)
\(=>M=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\ge1+\dfrac{3.2}{4}=\dfrac{5}{2}\)
dấu"=" xảy ra<=>\(a=2\)
cánh 2: \(M=a+\dfrac{1}{a}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\) dấu"=" xảy ra tương tự
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)
\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)
\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)
\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)
A = 3 \(\Leftrightarrow a=b=c=1\)
Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)
\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)
\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)
\("="\Leftrightarrow a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(a+b+c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}=9\)
Vậy $P_{\min}=9$ khi $a=b=c=\frac{1}{3}$
Hoặc cách khác:
Áp dụng BĐT Cô-si:
\(\frac{1}{a}+9a\geq 2\sqrt{\frac{1}{a}.9a}=6\)
\(\frac{1}{b}+9b\geq 6\)
\(\frac{1}{c}+9c\geq 6\)
Cộng theo vế: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+9(a+b+c)\geq 18\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+9\geq 18\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9\)
Vậy $P_{\min}=9$
S=\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}=1+\dfrac{1}{ab}+\dfrac{1}{ab}=1+\dfrac{2}{ab}\)
Áp dụng bất đẳng thức Cô-si cho 2 số dương ta có: \(a^2+b^2\ge2ab\Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow1\ge4ab\Leftrightarrow ab\le\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{ab}\ge4\)
\(\Rightarrow1+\dfrac{2}{ab}\ge1+2.4=9\)
Đảng thức xảy ra khi a=b \(\Rightarrow a=b=\dfrac{1}{2}\)
Vậy GTNN của S=9 khi a=b=1/2
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)