K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PV
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 3 2015
vì b2 = a.c nên \(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{2015.b}{2015.c}=\frac{a+2015.b}{b+2015.c}\)
\(\Rightarrow\left(\frac{a+2015.b}{b+2015.c}\right)^2=\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}=\frac{a^2}{a.c}=\frac{a}{c}\)
NQ
Cho a,b,c là số dương . Chứng minh:s^2016+b^2016+c^2016>(b+c×a^2015)/2+(c+a×b^2015)/2+(a+b×a^2015)/2
0
TM
28 tháng 6 2017
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\)
=>\(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2016k-2014k\right)^2=\left(2k\right)^2=4k^2\)
=>đpcm
A. Ta có : a^2 (b+c)= b^2(a+c)
→ a^2(b+c)- b^2(a+c) =0
→ aab+aac-bba-bbc =0
→ (aab-bba) + ( aac-bbc) =0
→ ab (a-b )+ c(a+b)(a-b) =0
→[ c(a+b)+ab] . (a-b) =0
Mà a-b khác 0
→ c(a+b) +ab =0
→ac+bc+ab=0
→ b(a+c)=-ac
→ b^2 (a+c) =-abc
Mà b^2 (a+c) =2015 ( đề bài )
→ -abc =2015
→ ĐPCM
a^2*(b+c)=b^2*(a+c)=>2015/a^2-b=2015/b^2-a
2015/b^2-2015/a^2=a-b
2015*a^2-2015*b^2=(a-b)*a^2*b^2
2015*a^2-2015*b^2=a*b^2*a^2-a^2*b*b^2
=>a*b^2=2015;a^2*b=2015
=>a*b^2=a^2*b
=>b^2=a*b;a^2=a*b
=>a^2=b^2
=>a=b hoặc a=-b.Mà a,b,c đôi một khác nhau
=>a=-b=>a+b=0=>A=c^2*(a+b)=0