\(a^2+b^2+c^2=m\) . Tính giá trị của biểu thức sau theo m:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

\(A=\left(2a+2b+2c-3x\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)

Đặt a + b + c = x thì:

\(A=\left(2x-3c\right)^2+\left(2x-3a\right)^2+\left(2x-3b\right)^2\)

\(=4x^2-12cx+9c^2+4x^2-12ax+9a^2+4x^2-12bx+9b^2\)

\(=12x^2-12x\left(a+b+c\right)+9\left(a^2+b^2+c^2\right)\)

\(12x^2-12x^2+9\left(a^2+b^2+c^2\right)=9\left(a^2+b^2+c^2\right)=9m\)

22 tháng 8 2017

\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

\(A=4a^2+4b^2+c^2+8ab-4bc-4ac+4b^2+4c^2+a^2+8ac-4ca-4ba+4c^2+4a^2+b^2+8ca-4ab-4cb\)

\(A=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)=9m\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2017

Lời giải:

\(A=4(a+b)^2+c^2-4c(a+b)+4(b+c)^2+a^2-4a(b+c)+4(c+a)^2+b^2-4b(a+c)\)

\(\Leftrightarrow A=4(a+b)^2+4(b+c)^2+4(c+a)^2-8(ab+bc+ac)\)

\(\Leftrightarrow A=4(a^2+b^2+2ab)+4(b^2+c^2+2bc)+4(c^2+a^2+2ac)-8(ab+bc+ac)\)

\(\Leftrightarrow A= 8(a^2+b^2+c^2)=8m\)

21 tháng 9 2018

\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)

\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)

Đặt \(a+b+c=n\)

\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)

\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)

\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)

Ta có: \(a^2+b^2+c^2=m\)

\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)

\(A=9m\)

Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)

Tham khảo nhé~

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

Đặt \(a+b+c=t\)

\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)

\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)

\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)

\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)

\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)

\(=12t^2+9m-12t^2=9m\)

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

26 tháng 5 2017

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

26 tháng 5 2017

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

NV
9 tháng 5 2020

\(1+a^2b^2=abc\left(a+b+c\right)+a^2b^2=ab\left(ab+bc+ca+c^2\right)=ab\left(a+c\right)\left(b+c\right)\)

\(1+b^2c^2=bc\left(a+b\right)\left(a+c\right)\) ; \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)

\(\Rightarrow Q=\frac{c^2\left(a+b\right)^2ab\left(a+c\right)\left(b+c\right)}{bc\left(a+b\right)\left(a+c\right)ac\left(a+b\right)\left(b+c\right)}=1\)