\(a^2+b^2+c^2=a^3+b^3+c^3=1\) Tính \(S=a^2+b^9+c^{2016}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2017

Lời giải:

Từ \(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\leq 1\Rightarrow -1\leq a,b,c\leq 1\)

\(a^3+b^3+c^3=a^2+b^2+c^2\)

\(\Leftrightarrow a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)

\(a,b,c\leq 1\) nên \(\left\{\begin{matrix} a^2(a-1)\leq 0\\ b^2(b-1)\leq 0\\ c^2(c-1)\leq 0\end{matrix}\right.\Rightarrow a^2(a-1)+b^2(b-1)+c^2(c-1)\leq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^2(a-1)=0\\ b^2(b-1)=0\\ c^2(c-1)=0\end{matrix}\right.\)

\(a^3+b^3+c^3=1\) nên trong \(a,b,c\) có hai số bằng $0$ và một số bằng $1$

Suy ra \(S=a^2+b^9+c^{2016}=1\)

14 tháng 9 2016

\(\begin{cases}a^2+b^2+c^2=1\\a^3+b^3+c^3=1\end{cases}\)\(\Leftrightarrow a^2+b^2+c^2=a^3+b^3+c^3\)

\(\Leftrightarrow a^2+b^2+c^2-a^3-b^3-c^3=0\)

\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)

Mà \(\begin{cases}a^2\left(1-a\right)\\b^2\left(1-b\right)\\c^2\left(1-c\right)\end{cases}\ge0\)Suy ra \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)

Dấu = khi \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)

\(\Leftrightarrow\begin{cases}a=b=c=0\\a=b=c=1\end{cases}\)

Mà a=b=c=0 thì a2+b2+c2=a3+b3+c3\(\ne1\) (loại)

=>a=b=c=1 <=>T=120+1+12016=1

-->Đpcm

 

 

 

14 tháng 9 2016

Dễ thấy vai trò của a,b,c là bình đẳng.

Ta có : \(a^2+b^2+c^2=1\) \(\Rightarrow\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\)

Lại có : \(a^2+b^2+c^2=a^3+b^3+c^3\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)

Mặt khác : \(\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}\)

Suy ra dấu "=" chỉ xảy ra khi \(\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}\)

=> (a;b;c) = (0;0;1) và các hoán vị (vì vai trò của a,b,c bình đẳng)

Từ đó thay vào được điều phải chứng minh đúng.

 

13 tháng 7 2017

\(\left(a^2+b^2\right)^3=a^6+3a^2b^2\left(a^2+b^2\right)+b^6=a^6+b^6+3a^2b^2=1\) \(\left(a^3+b^3\right)^2=a^6+2a^3b^3+b^6=1\) =>3a2b2=2a3b3 <=> a2b2(2ab-3)=0 <=> a=0 hoặc b=0 hoặc 2ab=3 Nếu a=0=> b2=1 và b3=-1 => b=-1 => S=-1 Nếu b=0=> a2=1 và a3=-1 => a=-1 => S=1 Nếu 2ab=3 => (a-b)2=-2 => không thỏa mãn Vậy .....

26 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2+b^2}{ab\left(a+b\right)^3}\ge\dfrac{2ab}{ab\left(a+b\right)^3}=\dfrac{2}{\left(a+b\right)^3}\\\dfrac{b^2+c^2}{bc\left(b+c\right)^3}\ge\dfrac{2bc}{bc\left(b+c\right)^3}=\dfrac{2}{\left(b+c\right)^3}\\\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{2ca}{ca\left(c+a\right)^3}=\dfrac{2}{\left(c+a\right)^3}\end{matrix}\right.\)

\(\Rightarrow VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

Chứng minh rằng \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}2ab\le a^2+b^2\\2bc\le b^2+c^2\\2ca\le c^2+a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab\le a^2-ab+b^2\\bc\le b^2-bc+c^2\\ca\le c^2-ca+a^2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ab\left(a+b\right)\le\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\\bc\left(b+c\right)\le\left(b+c\right)\left(b^2-bc+c^2\right)=b^3+c^3\\ca\left(c+a\right)\le\left(c+a\right)\left(c^2-ca+a^2\right)=c^3+a^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3ab\left(a+b\right)\le3\left(a^3+b^3\right)\\3bc\left(b+c\right)\le3\left(b^3+c^3\right)\\3ca\left(c+a\right)\le3\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+3ab\left(a+b\right)+b^3\le4\left(a^3+b^3\right)\\b^3+3bc\left(b+c\right)+c^3\le4\left(b^3+c^3\right)\\c^3+3ca\left(c+a\right)+a^3\le4\left(c^3+a^3\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^3\le4\left(a^3+b^3\right)\\\left(b+c\right)^3\le4\left(b^3+c^3\right)\\\left(c+a\right)^3\le4\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left(a+b\right)^3}\ge\dfrac{1}{4\left(a^3+b^3\right)}\\\dfrac{1}{\left(b+c\right)^3}\ge\dfrac{1}{4\left(b^3+c^3\right)}\\\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4\left(c^3+a^3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\)

Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}=\dfrac{9}{2}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\) ( đpcm )

Vậy \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{ab\left(a+b\right)^3}+\dfrac{b^2+c^2}{bc\left(b+c\right)^3}+\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{9}{4}\) ( đpcm )

26 tháng 3 2017

đề thiếu số dương à ? hay đủ

26 tháng 9 2017

Do a2+b2+c2=1 và a3+b3+c3=1

=> a2+b2+c2=a3+b3+c3=1  <=> a2(1-a)+b2(1-b)+c2(1-c)=0

Do a2+b2+c2=1 => a, b, c \(\le\)1

=> (1-a); (1-b) và (1-c) \(\ge\)0

=> a2(1-a)+b2(1-b)+c2(1-c)\(\ge\)0

Dấu "=" xảy ra khi và chỉ khi: a2(1-a)=b2(1-b)=c2(1-c)=0. Do a2+b2+c2=1 nên ta có các trường hợp:

\(\hept{\begin{cases}a=b=0;c=1\\a=1;b=c=0\\b=1;a=c=0\end{cases}}\)

Trong tất cả các trường hợp thì S=1

Đáp số: S=1

26 tháng 9 2017

Thanks bn nha Bùi Thế Hào

20 tháng 10 2020

\(a^2+b^2+c^2=1\Rightarrow-1\le a,b,c\le1;a^3-a^2+b^3-b^2+c^3-c^2\)

\(=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\Rightarrow a^2\left(a-1\right)=0;b^2\left(b-1\right)=0;c^2\left(c-1\right)=0\)

\(\text{kết hợp với:}a^3+b^3+c^3=1\Rightarrow\text{có 2 số bằng 0; 1 số bằng 1}\Rightarrow S=1\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

11 tháng 7 2019

Bài 3:(dài quá,đăng từ câu):

a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)

BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:

\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)

Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và

\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)

Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)

Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.

11 tháng 7 2019

Bài ngắn làm trước:

Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:

\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)

\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)

\(=8\left(a+b+c\right)-12=8.3-12=12\)

Dấu "=" xảy ra khi ....

Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"