K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Xét hiệu

\(a^3-a^2+b^3-b^2+c^3-c^2=0\)

<=>\(a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)

Ta có:\(a^2+b^2+c^2=1\)

=>\(a^2\le1\)

=>|a|\(\le1\)

Mà|a|\(\ge a\)

=>a \(\le1\)

=>\(a^2(a-1)\le0\)

CMTT:\(b^2(b-1)\le0\)

\(c^2(c-1)\le0\)

\(a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)

Dấu "=" xảy ra<=>a=1=>b=c=0

b=1=>a=c=0

c=1=>a=b=0

=>\(a^5+b^5+c^5=1\)

17 tháng 10 2022

Bài 4: 

=>x(x^2+1)=0

=>x=0

Bài 5: 

=>\(3n^3+n^2+9n^2-1-4⋮3n+1\)

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Bài 3: 

\(a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

10 tháng 1 2018

sory mình chưa có thời gian nên chỉ làm đc 1 câu thôi còn các cầu khác tương tự nhé bạn chúc bạn thành công

9 tháng 1 2018

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

Các câu khác tương tự

Bài 2: 

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM

20 tháng 10 2018

Bài 1: theo mình nghĩ thì nên cho thêm điều kiện gì chứ ạ :(
Bài 2: Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+3.\dfrac{1}{ab}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\) ( hằng đẳng thức: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) )

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-3.\dfrac{1}{ab}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-3.\dfrac{1}{ab}.\left(-\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)

\(A=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\)

\(A=abc.\dfrac{3}{abc}=3\)

Bải 3: Ta có

\(x+y+z=0\)

\(\Rightarrow y+z=-x\)

\(\Rightarrow\left(y+z\right)^5=-x^5\)

\(\Rightarrow y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(\Rightarrow x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(\Rightarrow x^5+y^5+z^5+5yz\left[\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right]=0\)

\(\Rightarrow x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2-yz+z^2+2yz\right)=0\)

\(\Rightarrow x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(\Rightarrow x^5+y^5+z^5=-5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=2.-5yz.\left(-x\right)\left(y^2+yz+z^2\right)\)

\(\Rightarrow2.\left(x^5+y^5+z^5\right)=5xyz.\left(2y^2+2yz+2z^2\right)\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left[\left(y+z\right)^2+y^2+z^2\right]\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

29 tháng 10 2022

Bài 3:

Tham khảo:

loading...

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

22 tháng 9 2017

1. \(a^3+b^3+c^3-3abc\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2+c^3-3abc\)

\(=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b\right)^2-c.\left(a+b\right)+c^2\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)\)

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\RightarrowĐpcm.\)

2. Dễ rồi.

3.

\(A=2.\left(x-y\right).\left(x^2+xy+y^2\right)-3.\left(x^2+2xy+y^2\right)\)

\(A=4.\left(x^2+xy+y^2\right)-3x^2-6xy-3y^2\)

\(A=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(A=x^2-2xy+y^2\)

\(A=\left(x-y\right)^2\)

Thay \(x-y=2\) vào ta có:

\(A=\left(x-y\right)^2\)\(=2^2=4\)

4. \(A=x^2-3x+5\)

\(A=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

\(\Rightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{-3}{2}\)

\(\Rightarrow Min_A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(B=4x^2-4x+1+x^2+4x+4\)

\(B=5x^2+5\)

Ta có: \(5x^2\ge0\)

\(\Rightarrow5x^2+5\ge0\)

\(\Rightarrow Min_B=5\Leftrightarrow x=0\)