Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có \(a^2+b^2\ge2ab\)
\(\Leftrightarrow1\ge ab\)
theo bđt cauchy schwarz ta có
\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(\dfrac{a}{b^2}+\dfrac{b}{a^2}\right)\ge2\sqrt{\dfrac{a.b}{a.b}}.2\sqrt{\dfrac{a.b}{a^2.b^2}}=2.1.2\dfrac{1}{1^2}=4\)
\(\Rightarrow dpcm\)
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)
\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)
VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)
Dấu''='' xra\(\Leftrightarrow\)a=b=c
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)
b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)
=>đpcm. Dấu bằng xảy ra khi a=b
c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)
Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(a^2+\frac{1}{2}+\frac{1}{2}\right)[1+2+2(b+c)^2]\geq (a+1+b+c)^2\)
\(\Rightarrow \frac{5}{16}(a^2+1)[3+2(b+c)^2]\geq \frac{5}{16}(a+b+c+1)^2\)
Để hoàn thành bài toán ta cần chứng minh:
\((a^2+1)(b^2+1)(c^2+1)\geq \frac{5}{16}(a^2+1)[3+2(b+c)^2]\)
\(\Leftrightarrow (b^2+1)(c^2+1)\geq \frac{5}{16}[3+2(b+c)^2]\)
\(\Leftrightarrow b^2c^2+\frac{3}{8}(b^2+c^2)+\frac{1}{16}-\frac{5}{4}bc\geq 0\)
\(\Leftrightarrow (bc-\frac{1}{4})^2+\frac{3}{8}(b-c)^2\geq 0\)
(Luôn đúng)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Câu 1:
Áp dụng BĐT Bunhiacopxky:
\((a^2+1+2)\left[1+1+\frac{(b+c)^2}{2}\right]\geq (a+1+b+c)^2\)
\(\Rightarrow 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\geq 4(a+b+c+1)^2\)
Để hoàn thành bài toán ta cần chứng minh:
\((a^2+3)(b^2+3)(c^2+3)\geq 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\)
\(\Leftrightarrow (b^2+3)(c^2+3)\geq 8+2(b+c)^2\)
\(\Leftrightarrow b^2c^2+b^2+c^2+1-4bc\geq 0\)
\(\Leftrightarrow (bc-1)^2+(b-c)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Bài toán chỉ đúng cho \(a,b>0\). Nếu tồn tại $2$ số âm thấy ngay nó không đúng.
Với điều kiện dương, BĐT cần CM tương đương với:
\((a^2+b^2+2ab)^5\geq 256(ab)^2(1+a^2+b^2+a^2b^2)\)
Đặt \(t=ab\Rightarrow 2t=2ab\leq a^2+b^2=2\Rightarrow 0< t\leq 1\)
Cần CM \((2t+2)^5\geq 256t^2(3+t^2)\Leftrightarrow (t+1)^5\geq 8t^2(t^2+3)\) \((\star)\)
Theo BĐT Cauchy thì \((t+1)^2\geq 4t\Rightarrow (t+1)^5\geq 4t(t+1)^3\)
Theo tính chất bắc cầu ta chỉ cần chỉ ra
\(4t(t+1)^3\geq 8t^2(t^2+3)\Leftrightarrow (t+1)^3\geq 2t(t^2+3)\)
\(\Leftrightarrow (t-1)^3\leq 0\) (luôn đúng do \(t\leq 1\) )
BĐT \((\star)\) được chứng minh. Bài toán hoàn tất
Dấu bằng xảy ra khi \(a=b=1\)