K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(a^2+b^2+1=ab+a+b\)

\(\Rightarrow2\left(a^2+b^2+1\right)=2(ab+a+b)\)

\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1=0\)\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a-b=0;a-1=0;b-1=0\)

Hay \(a=b=1\left(đpcm\right)\)

21 tháng 9 2018

a) ta có: (a+b)2 = 2.(a2+b2)

=> a2 + 2ab + b2 = 2a2 + 2b2

=> 2a2 + 2b2 - a2 - 2ab - b =  0

a2 - 2ab + b2 = 0

(a-b)2 = 0

=> a -b = 0

=> a = b

21 tháng 9 2018

b) ta có: a2 +b2 + c2 = ab + bc + ac => 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac

=> (a-b)2 + (b-c)2 + (c-a)2 = 0

=> a = b = c

14 tháng 8 2016

các bạn giúp đi mình k cho!!!!!!

30 tháng 8 2016

BÀi 1: (ab-1)^2+(a+b)^2

=a^2b^2 -2ab+1+a^2+2ab+b^2

=a^2b^2 +a^2 +b^2+1

= a^2(b^2+1) +(b^2+1)

=(a^2 +1)(b^2 +1)   MÀ a,b thuộc N* , a^2+1>= 0 với mọi a,     b^2+1>= 0 với mọi b

Vậy x là hợp số

16 tháng 7 2019

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

4 tháng 10 2018

ta có : a^2 + b^2 + 1 = ab + a + b

=> 2a^2 + 2b^2 + 2 = 2ab + 2a + 2b

=> 2a^2 + 2b^2 + 2 - 2ab - 2a - 2b = 0

(a^2-2a+1) + (b^2-2b+1) + (a^2 - 2ab + b^2) = 0

(a-1)^2 + (b-1)^2 + (a-b)^2 = 0

mà (a-1)^2;(b-1)^2;(a-b)^2 lớn hơn hoặc = 0

=> (a-1)^2 = 0 => a-1=0 => a = 1

(b-1)^2 = 0 => b - 1 = 0 => b = 1

=> a =b=1

1 tháng 10 2018

\(a^2+b^2+1=ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab-a-b=0\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-a+1\right)+\left(b^2-b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\)

25 tháng 3 2019

1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)

Dấu '=' xảy ra khi \(a=b=1\)

26 tháng 3 2019

2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)

Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)

Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)

Dấu "=" xảy ra khi a = b = c = 1