\(a^2+a+1=0\) tính gt của bt P =\(a^{2013}+\frac{1}{a^{2013}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a)

Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)

\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)

Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)

Vậy A là hợp số

1b)

Ta có :

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)

\(=2^{2012}-1+1=2^{2012}\)

27 tháng 1 2020

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Nên từ \(\left(1\right)\Rightarrow x=y=z=0\)

\(\Rightarrow D=0\)

15 tháng 8 2015

\(1\text{) }a^3+b^3+c^3=3abc\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a+b+c=0\text{ hoặc }a-b=b-c=c-a=0\)

\(\Leftrightarrow a+b+c=0\text{ hoặc }a=b=c\)

\(\text{+TH1: }a+b+c=0\Rightarrow a+b=-c;\text{ }b+c=-a;\text{ }c+a=-b\)

\(B=\frac{b+a}{a}.\frac{c+b}{c}.\frac{a+c}{b}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

\(+\text{TH2: }a=b=c\)

\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

\(2\text{) Ta có: }a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(\Rightarrow0=0+3abc\Rightarrow abc=0\)

\(\Rightarrow a=0\text{ hoặc }b=0\text{ hoặc }c=0\)

Không mất tính tổng quát, giả sử c = 0.

\(a+b+c=0\Rightarrow a+b=0\Rightarrow a=-b\)

\(C=\left(-b\right)^{2013}+b^{2013}+0^{2013}=0\)

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\) 

26 tháng 6 2016

1) a thỏa mãn: a2 + a + 1 = 0, rõ ràng a khác 0. Chia cả 2 vế cho a ta được: \(a+\frac{1}{a}=-1\)

  • Mặt khác ta có: \(\left(a+\frac{1}{a}\right)^3=-1\Rightarrow a^3+3\cdot\left(a+\frac{1}{a}\right)+\frac{1}{a^3}=-1\Rightarrow a^3+\frac{1}{a^3}=2\)
  • \(\Rightarrow\left(a^3+\frac{1}{a^3}\right)^2=4\Rightarrow a^6+\frac{1}{a^6}=2\)\(\Rightarrow\left(a^6+\frac{1}{a^6}\right)\left(a^3+\frac{1}{a^3}\right)=4\Rightarrow a^9+\frac{1}{a^9}+a^3+\frac{1}{a^3}=4\Rightarrow a^9+\frac{1}{a^9}=2\)
  • ... \(\Rightarrow a^{3k}+\frac{1}{a^{3k}}=2\)
  • \(\Rightarrow a^{2013}+\frac{1}{a^{2013}}=2\)

2) Từ: \(x^2+x^2y^2-2y=0\Rightarrow x^2\left(y^2+1\right)=2y\Rightarrow x^2=\frac{2y}{y^2+1}\)

Với mọi y thì: \(\left(y-1\right)^2\ge0\Leftrightarrow2y\le y^2+1\Leftrightarrow\frac{2y}{y^2+1}\le1\)Do đó \(x^2=\frac{2y}{y^2+1}\le1\Rightarrow-1\le x\le1\)(1)

Mặt khác: \(x^3+2y^2-4y+3=0\Leftrightarrow x^3+1+2\left(y-1\right)^2=0\)(2)

Từ (1) => \(x^3+1\ge0\forall x\Rightarrow VT\left(2\right)\ge VP\left(2\right)\forall x;y\)

Để TM (2) thì dấu "=" xảy ra, khi đó x = -1; y = 1

và suy ra \(Q=x^2+y^2=2\)

28 tháng 1 2018

\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)

=> (  ab + bc + ca ) x ( a + b +c ) = abc 

=> ( ab + bc + ca ) x ( a + b ) + ( abc + bcc + cca - abc ) = 0 

=> ( ab + bc + ca ) x ( a + b ) + c2  x ( a + b ) = 0

=> ( a + b ) x ( a + c ) x ( b + c ) = 0

=> trong đó a , b đối nhau khi đó vì n lẻ nên

1/a2013 + 1/b2013 + 1/c2013 = 1/c2013 = 1/c2013 + b 2013 + c2013

28 tháng 1 2018

cảm ơn bn nhé!!!!

29 tháng 6 2019

a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)

b.bạn viết đề kiểu j vậy

29 tháng 6 2019

Ko sai đề nha bn