
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT

Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21

nì !!!!!! chinh :)
Đầu tiên bn phải chứng minh chia hết cho 5 và 31 vì 5 và 31 là 2 số nguyên tố cùng nhau
Chứng minh chia hết cho 5
2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^97(1+2+2^2+2^3)
=2.15+2^5.15+....+2^97.15 suy ra chia hết cho 5 vì 15 chia hết cho Tương tự cx làm chia hết cho 31 lần lượt là
2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+…+2^96(1+2+2^2+2^3+2^4)
=2.31+2^6.31+2^96.41 suy ra chia hết cho 31 mà 31 và 5 là hai số nguyên tố cùng nhau nên nó chia hết cho 31.5=155

1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

Ta có: ab= 10a + b
ba=10b + a
=> ab + ba = 10a + b+ 10b + a = 11a + 11b Chia hết cho 11
abc -cba= 100a + 10b + c - 100c -10b -a = ( 100a -a ) + (10b - 10b) + ( 100c - c ) = 99a - 99c chia hết cho 99

Bài 1:
a)CMR: ab + ba chia hết cho 11
Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)
= 11a + 11b chia hết cho 11 b)CMR: abc - cba chia hết cho 99
Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)
= 99a - 99c chia hết cho 99
Bài 2
A= (321 + 322 + 323) + ... + (327 + 328 + 329) A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)
A=321 . 13 + ... + 327 . 13
A= 13 . (321 + ... + 327) chia hết cho 13
A = 2 + 22 + 23 + ...+ 299 + 2 100
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 299 + 2100 )
A = 2(1+2) + 23(1+2) + ...+ 299(1+2)
A = 2.3 + 23 .3 + ...+ 299.3
A = 3( 2 + 23 + ...+299) \(⋮\) 3
=> Vây A chia hết cho 3