\(a+b+c+ab+bc+ca\ge1+\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

26 tháng 11 2019

@Võ Hồng Phúc

5 tháng 6 2017

vì \(a,b,c\in\left[0,1\right]\)\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-a-b+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-c-a+ac-b+bc+ab-abc\ge0\)

\(\Leftrightarrow a+b+c-\left(ab+bc+ac\right)\le1-abc\)

mặt khác : \(a.bc\ge0\)

\(\Rightarrow a+b+c-\left(ab+ac+bc\right)\le1-0=1\)

mà \(b,c\in\left[0.1\right]\Rightarrow b^2\le b;c^3\le c\)

vì vậy ta được điều phải chứng minh : 

\(a+b^2+c^3-\left(ab+bc+ac\right)\le1\)

28 tháng 5 2018

Vì \(b,c\in[0;1]\)

\(\Rightarrow b^2\le b\)

     \(c^3\le c\)

Do đó :  \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)          (1)

Và có : \(a+b+c-ab-bc-ca=\left(a-1\right).\left(b-1\right).\left(c-1\right)-abc+1\)             (2)

Theo đề bài ta có : \(a,b,c\in[0;1]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

và \(-ab\le0\)

Từ (2)

\(\Rightarrow a+b+c-ab-bc-ca\le1\)       (3)

Từ (1) và (3)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)( đpcm)

4 tháng 6 2018

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2\left(a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)=12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Dấu = xảy ra khi a=b=c=1

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Đặt biểu thức đã cho là $A$.
Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\geq 2\sqrt{(a^2+b^2)(c^2+d^2)}\)

Mà:
\((a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=(ac-bd)^2+(ad+bc)^2=1+(ad+bc)^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 2\sqrt{1+(ad+bc)^2}\)

\(\Rightarrow A\geq 2\sqrt{1+(ad+bc)^2}+ad+bc\). Đặt $ad+bc=t$ thì: $A\geq 2\sqrt{t^2+1}+t$.

Áp dụng BĐT Bunhiacopxky:

\((t^2+1)\left[(\frac{-1}{2})^2+(\frac{\sqrt{3}}{2})^2\right]\geq (\frac{-t}{2}+\frac{\sqrt{3}}{2})^2\)

\(\Leftrightarrow \sqrt{t^2+1}\geq |\frac{-t}{2}+\frac{\sqrt{3}}{2}|\)

\(\Rightarrow A\geq 2\sqrt{t^2+1}+t\geq 2|\frac{-t}{2}+\frac{\sqrt{3}}{2}|+t\geq 2(\frac{-t}{2}+\frac{\sqrt{3}}{2})+t=\sqrt{3}\) (đpcm)

17 tháng 5 2020

Dấu bằng xảy ta khi nào vậy bạn