K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Cách 1 ( thông dụng ): Dùng định lý:
Theo đầu bài ta có:
\(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\Rightarrow a^2+b^2+c^2\ge0\)
Mà a2 + b2 + c2 = 0 nên suy ra: \(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\)
\(\Rightarrow ab+bc+ac=0\)

Cách 2: Dùng công thức:
Theo đầu bài ta có:
\(a^2+b^2+c^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=2ab+2bc+2ac\)
\(\Rightarrow\left(a+b+c\right)^2=2\left(ab+bc+ac\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{2}=ab+bc+ac\)

1 tháng 9 2016

giai nhu ban vu quang minh vay do

20 tháng 2 2018

ta có \(ab+bc+ca=0\)

\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)  ta có: 

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

ta lại có: \(x^3+y^3+z^3\)

\(=x^3+y^3-\left(x+y\right)^3\)  

\(=x^3+y^3-x^3-3xy\left(x+y\right)-y^3\)

\(=-3xy\left(-z\right)\)

\(=3xyz\)

từ đây suy ra \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ba}{c^2}=\frac{3abc}{abc}\)  \(=3\)  ( nhân với abc cho cả 2 vế của biểu thức )

vậy \(N=3\)

27 tháng 9 2018

Ta có

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=0\)(vì a+b+c=0)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Lại có

\(P=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

1)a) (A + B)2 = ?b) (A + B)3 = ?c) A2 - B2 = ?Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử9x3 + 135x2y + 135xy2 + 5y3 = ?2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z                B = 5xyzKhông đặt phép chia hãy cho biết A có chia hết cho B không?b) Cho C = 13ab2 + abc + 32a            D = 7abKhông đặt phép chia hãy cho biết C có chia hết cho D không?3) Cho \(\Delta ABC\)có AB = AC. M,...
Đọc tiếp

1)

a) (A + B)2 = ?

b) (A + B)3 = ?

c) A2 - B2 = ?

Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử

9x3 + 135x2y + 135xy2 + 5y3 = ?

2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z

                B = 5xyz

Không đặt phép chia hãy cho biết A có chia hết cho B không?

b) Cho C = 13ab2 + abc + 32a

            D = 7ab

Không đặt phép chia hãy cho biết C có chia hết cho D không?

3) Cho \(\Delta ABC\)có AB = AC. M, N, P lầm lượt là trung điểm của AB, BC, AC. Hỏi MP là đường gì của\(\Delta ABC\)? và AB = 3cm, tính BC, AC (biết BC là cạnh huyền của\(\Delta ABC\))

(ba câu trên rất dễ, ai làm đúng cả 3 câu sẽ được 3 tick, 2 câu thì 2 tick, 1 câu thì một tick, nếu ai trả lời ngoài phạm vi mik sẽ tick sai)

3
31 tháng 10 2019

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

31 tháng 10 2019

2

a

\(15x^2y^3z^2-20x^2yz^2+10xy^3z\)

\(=5xyz\left(3xy^2z-4xz+2y^2\right)⋮5xyz\)

b

\(13ab^2+abc+32a=a\left(13b^2+bc+32\right)\) 

TH1:\(13b^2+bc+32=7b\cdot P\left(x\right)\) thì A chia hết cho B

TH2:\(13b^2+bc+32=7b\cdot Q\left(x\right)+r\left(r>0\right)\) thì A không chia hết cho B

17 tháng 7 2017

Bài 1:

a)\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)

Khi \(a=b=c\)

c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

Bài 2:

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)

Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)

so u cn tk m sl fr u

17 tháng 7 2017

a2 + b2+ c2 = ab + bc + ca 

=> a2 + b2+ c2 -ab - bc - ca = 0 

=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0

=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0 

<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0

Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0

=> a-b =0 ; b -c = 0 ; c -a = 0 

=> a=b ; b = c ; c =a 

Vậy a = b = c 

23 tháng 6 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3.\frac{1}{ab}.\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3.\frac{1}{ab}.\frac{1}{-c}=3.\frac{1}{abc}\)

Ta có : \(M=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

6 tháng 7 2019

Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo nhé!

7 tháng 7 2016

\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(=\frac{1}{abc}\left(\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(a+c\right)\right)\)

\(=\frac{1}{abc}\left(0+3abc\right)\)

\(=3\)