
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)

1.
a. Ta có: \(A=2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(B=3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8^{100}< 9^{100}\)
\(\Rightarrow A< B\)
b. Ta có: \(A=2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(B=3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Mà \(8^{111}< 9^{111}\)
\(\Rightarrow A< B\)
c. Ta có: \(A=2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(B=5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Mà \(8192^7>3125^7\)
\(\Rightarrow A>B\)
Câu 2:
a: =>(x-6)(x-7)=0
=>x=6 hoặc x=7
b: =>\(x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)
hay \(x\in\left\{0;5;-5\right\}\)

=> (x - 1)2 = 64 => (x - 1)2 = 82 => x - 1 = 8 => x = 9
b/ => x2 - x = 0
=> x(x - 1) = 0
=> x = 0 hoặc x - 1 = 0 => x = 1
a) 2 . (x - 1)2 = 128
(x - 1)2 = 64 = + 8
=> x = 9 hoặc x = -7
b) x2 = x
<=> x \(\in\) {0; -1; 1}

a) ta thấy 6100 có chử số hàng dơn vị là 6
=>6100-1 có chữ số hàng đơn vị là 5
=>6100 chia hết cho 5
b) vì 1n=1 nên 3130 và 1110 có chữ hàng đơn vị là 1 =>3130-1110 có hàng đơn vị là 0
=>3130-1110 chia hết cho 2 và 5
2.
De 49ab chia het cho 5, suy ra b thuoc {0;5}
De 49ab chia het cho 2, suy ra b=0
Ta xet: 49ab co 4+9+a+0 chia het cho 9
=13+a chia het cho 9
Vay a =5
Suy ra a=5 va b=0 de 49ab chi het cho 2,5 va 9

A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)
\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)
A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{56}.31\)
\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)
Từ (1) và (2) => A chia hết cho 5.31
B = 1 + A nên B chia 5,31 và 15 đều dư 1.