K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 11 2019

\(a^2-b^2=-2\Rightarrow a^2=b^2-2\)

\(\Rightarrow A=\left(b^2-2\right)^3-b^6+3\left(b^2-2\right)^2+3b^4\)

\(=b^6-6b^4+12b^2-8-b^6+3b^4-12b^2+12+3b^4\)

\(=4\)

27 tháng 6 2016

cho tau mới giải cho

27 tháng 6 2016

????? giải giúp

26 tháng 10 2016

ý a)

(a+b)^2=a^2+b^2+2ab

=> 529=a^2+b^2+246  => a^2+b^2=283

(a^2+b^2)^2=a^4+b^4+2.a^2.b^2

=> 80089=a^4+b^4+30258   => a^4+b^4=49831

(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)

=> 14102173=a^6+b^6+15129.283  => a^6+b^6=9820666

còn lại bạn tự tính

26 tháng 10 2016

ý b)

(x+y)^3=x^3+y^3+3xy.(x+y)

suy ra x^3+y^3+3xy=1

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Lời giải:

a)

\(a^2+b^2=a^2+b^2+2ab-2ab=(a+b)^2-2ab\)

\(=5^2-2.6=13\)

b) \(a^3+b^3=(a^2+b^2)(a+b)-a^2b-ab^2\)

\(=(a^2+b^2)(a+b)-ab(a+b)=13.5-6.5=35\)

c) \(a^4+b^4=(a^2+b^2)^2-2a^2b^2=13^2-2.6^2=97\)

d)

\(a^6+b^6=(a^3+b^3)^2-2a^3b^3=35^2-2.6^3=793\)

2 tháng 10 2018

sai òi !!bucminh

28 tháng 6 2018

bài 2 

Giải:x6+y6)-3(x4+y4)

 2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)

⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4

⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4

⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4

⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4

⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)

⇔−(x2+y2)2⇔−(x2+y2)2

⇔−1

28 tháng 6 2018

bài 1

bạn thay vào hết và tính ra là được 

\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)