K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Vậy ta có đpcm

9 tháng 6 2020

Ta có : \(a^2+b^2\ge ab+1\)

\(2\sqrt{a^2b^2}\ge ab+1\)

\(ab\ge1\)

Dấu = xảy ra \(< =>a=b=\sqrt{1}=1\)

Bđt ngược dấu rồi thì phải

15 tháng 5 2017

\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (do a > 0)

Tương tự: \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Từ 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta sẽ chứng minh:

  \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)  

Thât vậy, do a, b, c là các cạnh của tam giác nên bất đẳng thức trên tương đương với

   \(a\left(a+b+c\right)< 2a\left(b+c\right)\)

\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)

\(\Leftrightarrow a\left(a-b-c\right)< 0\)

Bất đẳng thức này đúng vì a>0 và a < b + c (vì trong tam giác, tổng hai cạnh lớn hơn cạnh thứ ba).

Vậy ta có: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Vậy bài toán đã được chứng minh.

15 tháng 5 2017

Mình chỉ chứng minh được bé hơn 2 thôi nhe

Theo bất đẳng thức tam giác thì b+c>a => \(\frac{a}{b+c}< \frac{a}{a}\left(=1\right)\)

Tương tự ta cũng có 

\(\frac{b}{a+c}< 1\)

\(\frac{c}{a+b}< 1\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 3\)

25 tháng 5 2018

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

25 tháng 5 2018

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

17 tháng 2 2019

Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :

\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

Cộng 3 vế với nhau , ta có :

\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)

17 tháng 2 2019

Ta có :

\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);

\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);

\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)

Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b

\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)

\(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

Tương tự :

\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Kết hợp (*) với (**)

=> ĐPCM

4 tháng 8 2019

 TL:

\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)

17 tháng 10 2021

Đáp án: 

Giải thích các bước giải:

a, phân tích thành nhân tử

M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
    = (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
    = [(a-b)^2 - c^2][(a+b)^2 - c^2]
    = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0

25 tháng 5 2016

1. \(x^2+y^2+z^2=x\left(y+z\right)\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\Leftrightarrow\left(x-y\right)^2+y^2+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\y^2=0\\z^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

Vậy nghiệm của phương trình : (x;y;z) = (0;0;0)

2. Bạn xem lại đề !

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

NV
15 tháng 6 2020

\(0< a< 1\Rightarrow a-1< 0\Rightarrow a\left(a-1\right)< 0\Rightarrow a^2< a\)

Tương tự: \(b\left(b-1\right)< 0\Rightarrow b^2< b\) ; \(c\left(c-1\right)< 0\Rightarrow c^2< c\)

Cộng vế với vế:

\(a^2+b^2+c^2< a+b+c\Rightarrow a^2+b^2+c^2< 2\) (đpcm)