\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{2023}-1}\) CMR: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2024

\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)

\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

Một kết quả rất xấu

3 tháng 10 2017

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)

\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

Suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)

\(\)\(linh>10\left(đpcm\right)\)

Bài này ko phải 100 nhé

3 tháng 10 2017

bạn nào giải giúp mình vớikhocroi

2 tháng 10 2017

bài 3 : \(\left\{{}\begin{matrix}ab=2\\bc=3\\ca=54\end{matrix}\right.\)

hiển nhiên a;b;c =0 không phải nghiệm

\(\Leftrightarrow\left(abc\right)^2=2.3.54=18^2\)

\(\Leftrightarrow\left[{}\begin{matrix}abc=-18\\abc=18\end{matrix}\right.\)

abc=-18 => c=-9; a=-6; b=-1/3

abc=18 => c=9; a=6; b=1/3

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

23 tháng 8 2017

1. Câu hỏi của Cuber Việt ( Câu b í -.- )

2. Quy đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)

\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)

\(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.

So sánh \(ab+2018a\)\(ab+2018b\):

. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.

. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)

\(\Rightarrow y.\left(x-3\right)=6\)

Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)

Tự lập bảng ...

Vậy ta có những cặp x,y thỏa mãn là:

\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)

Cần so sánh:

\(ab+2018a\) với \(ab+2018b\)

Cần so sánh \(2018a\) với \(2018b\)

Cần so sánh \(a\) với \(b\)

\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)

\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)

a: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{1}{3}+\left(\dfrac{2}{4}-1\dfrac{2}{5}\right)< x< 2\dfrac{1}{7}+\left(\dfrac{-2}{5}-\dfrac{1}{4}\right)\)

\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{7}{5}< x< \dfrac{15}{7}-\dfrac{2}{5}-\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20}{60}+\dfrac{30}{60}-\dfrac{84}{60}< x< \dfrac{15\cdot20-2\cdot28-35}{140}\)

\(\Leftrightarrow-\dfrac{34}{60}< x< \dfrac{209}{140}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

b: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{7}{3}+\dfrac{3}{4}-\dfrac{1}{5}>x>\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{7\cdot20+3\cdot15-12}{60}>x>\dfrac{56-21+2\cdot12}{84}\)

\(\Leftrightarrow\dfrac{173}{60}>x>\dfrac{59}{84}\)

mà x là số nguên

nên \(x\in\left\{2;1\right\}\)

a: \(\dfrac{2}{3}:\left(6x+7\right)=0.2:1\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{2}{3}:\left(6x+7\right)=\dfrac{1}{5}:\dfrac{7}{6}=\dfrac{6}{35}\)

\(\Leftrightarrow6x+7=\dfrac{35}{9}\)

=>6x=-28/9

hay x=-28/54=-14/27

b: \(\dfrac{a}{a+2b}=\dfrac{c}{c+2d}\)

\(\Leftrightarrow a\left(c+2d\right)=c\left(a+2b\right)\)

\(\Leftrightarrow ac+2ad=ac+2bc\)

=>2ad=2bc

=>ad=bc

=>a/b=c/d

Đặt a/b=c/d=k

=>a=bk; c=dk

\(A=\dfrac{a^2\cdot d^2-4b^2\cdot c^2}{abcd}=\dfrac{b^2k^2\cdot d^2-4\cdot b^2\cdot d^2k^2}{bk\cdot b\cdot dk\cdot d}\)

\(=\dfrac{-3b^2k^2d^2}{b^2k^2d^2}=-3\)

21 tháng 11 2017

Ta dễ dàng chứng minh được: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

Thật vậy:

\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)Trở lại bài toán

\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+....+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A< \dfrac{1}{2.1.\left(1+1\right)}+\dfrac{1}{2.2.\left(2+1\right)}+\dfrac{1}{2.3.\left(3+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}-\dfrac{1}{2n+2}< \dfrac{1}{2}\left(đpcm\right)\)

22 tháng 7 2017

1. Tính:

a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)

b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)

c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)

d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)

2. Tính :

a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)

b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)

c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)

d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)

3. Tính :

a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)

b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)

c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)

d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{1}+\dfrac{1}{10}\)

\(=\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

Chế Kazuto Kirikaya thử tham khảo thử đi !!!

23 tháng 7 2017

Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya

d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)