K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

trần đắc lợi lần sau nhớ gõ latex nha bạn, như này người làm dễ bị sai đề lắm

\(a\sqrt{b-1}+b\sqrt{a-1}\)

Áp dụng AM-GM :

\(a\sqrt{b-1}+b\sqrt{a-1}\)

\(=a\sqrt{1\cdot\left(b-1\right)}+b\sqrt{1\cdot\left(a-1\right)}\le a\cdot\frac{1+b-1}{2}+b\cdot\frac{1+a-1}{2}\)

\(=\frac{ab}{2}+\frac{ab}{2}=ab\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=2\)

28 tháng 6 2019

cảm ơn nha

11 tháng 12 2019

ai làm đi

9 tháng 11 2017

Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)

     >= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)

Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)

=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM

Dấu "=" xảy ra <=> a=b=c=1/3

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

15 tháng 12 2017

Áp dụng bđt Cauchy ta có :

\(\sqrt{4a+1}\le\frac{4a+1+1}{2}=2a+1\)

\(\sqrt{4b+1}\le\frac{4b+1+1}{2}=2b+1\)

\(\sqrt{4c+1}\le\frac{4c+1+1}{2}=2c+1\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4b+1}\le2\left(a+b+c\right)+3=5\)(đpcm)

15 tháng 12 2017

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có: 

\(\left(1+1+1\right)\left[\left(\sqrt{4a+1}\right)^2+\left(\sqrt{4b+1}\right)^2+\left(\sqrt{4c+1}\right)^2\right]\)

\(\ge\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\)

\(\Leftrightarrow\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le3\left(4a+1+4b+1+4c+1\right)\)

\(\Leftrightarrow VT^2\le21\)

\(\Rightarrow VT^2< 25\)

\(\Rightarrow VT< 5\)

Vậy \(\sqrt{4a+1}+\sqrt{4c+1}+\sqrt{4b+1}< 5\)

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.