Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
|a|<1 (1)
|b-1|<10 (2)
|a-c|<10 (3)
Nhân (1) với (2) ,ta được:
|a|.|b-1|<1.10
<=>|ab-a|<10 (4)
Cộng (3),với (4) vế theo vế:
|a-c|+|ab-a|<20
<=>|a-c+ab-a|<20
<=>|ab-c|<20 (đpcm)
Ta có:
\(ab-c=ab-a+a-c=a\left(b-1\right)+\left(a-c\right)\)
\(\Rightarrow\left|ab-c\right|=\left|a\left(b-1\right)+\left(a-c\right)\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\left(b-1\right)\right|+\left|a-c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\right|\left|b-1\right|+\left|a-c\right|\)
Mà \(\left|a\right|< 1;\left|b-1\right|< 10;\left|a-c\right|< 10\)
\(\Rightarrow\left|ab-c\right|< 1.10+10\)
\(\Rightarrow\left|ab-c\right|< 20\left(đpcm\right)\)
Ta có:
\(ab-c=ab-a+a-c=a\left(b-1\right)+\left(a-c\right)\)
\(\Rightarrow\left|ab-c\right|=\left|a\left(b-1\right)+\left(a-c\right)\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\left(b-1\right)\right|+\left|a+c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\right|\left|b-1\right|+\left|a-c\right|\)
Mà \(\left|a\right|< 1;\left|b-1\right|< 10;\left|a-c\right|< 10\)
\(\Rightarrow\left|ab-c\right|< 1.10+10\)
\(\Rightarrow\left|ab-c\right|< 20\left(đpcm\right)\)
Chúc bạn học tốt!
ta có |a| = 1 \(\Rightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)và |ab-c| = 1.b-c| = |b-c|
+ nếu a = 1
=> |a-c| = |1-c| = |c-1| = |c| - 1 < 10 => |c| < 11
và |b-1| = |b| - 1 < 10 => |b| < 11
=> |b-c| \(\le\) 11-11 = 0 < 20 (1)
+ nếu a = -1
=> |-1-c| = |c+1| < 10 => c < 9
và |b-1| = |b| - 1 < 10 => |b| < 11
=> |b-c| \(\le\) 11-9 = 2 < 20 (2)
từ 1 và 2 => đpcm