Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(44\equiv2\left(mod7\right)\Rightarrow44^{2005}\equiv2^{2005}\left(mod7\right)\) (*)
Lại có: \(2^3\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}.2\equiv2\left(mod7\right)\)
\(\Leftrightarrow2^{2005}\equiv2\left(mod7\right)\)(**)
Từ (*) và (**) suy ra \(44^{2005}\equiv2\left(mod7\right)\)
Vậy \(44^{2005}\)chia 7 dư 2
a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)
Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)
Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)
\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)
Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100) mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)
b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)
Bạn nào trả lời bài này nhanh nhất thì add vs mk , mk sẽ tặng 1 thẻ điện thoại 50k cho 2 bạn trả lời nhanh nhất nhé!
Nhanh các bạn ơi!!!
Hứa k bùng đâu
Có \(2^{3^{9000}}=2^{3^2.\left(3^2\right)^{4499}}=\left(2^{3^2}\right)^{9^{4499}}=512^{9^{4499}}\)
=> A = \(\left(512.47\right)^{9^{4499}}+1001^{20000}=24064^{9^{4499}}+1001^{20000}\)
Ta có: \(24064^{9^{4499}}\) đồng dư với \(64^{9^{4499}}\) ( mod 1000)
+) xét: 92 đồng dư với 1 (mod 20) => 94499 = (92)2249 .9 đồng dư với 1.9 = 9 ( mod 20)
=> 94499 = 20k + 9
=> \(64^{9^{4499}}=\left(2^6\right)^{20k+9}=\left(2^{20}\right)^{6k}.2^{6.9}=\left(2^{20}\right)^{6k+2}.2^{14}\)
Mà 220 đồng dư với 576 (mod 1000) nên \(64^{9^{4499}}=\left(2^{20}\right)^{6k+2}.2^{14}\) đồng dư với 576.16384 = 9 437 184 (mod 1000)
=> \(64^{9^{4499}}\) đồng dư với 184 mod 1000
=> \(24064^{9^{4499}}\) đồng dư với 184 (mod 1000)
+) ta có: 100120 000 đồng dư với 120 000 = 1 (mod 1000)
=> A đồng dư với 184 + 1 = 185 (mod 1000)
Vậy 3 chữ số tận cùng của A là 185