Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = 1 + 5 + 52 + 53 + 54 + ...+ 52017
A = \(\frac{5^{2017}-1}{5-1}\)
B = \(\frac{5^{2018}-1}{2-1}\)
=> \(4A=\frac{5^{2017}-1}{4}.4=5^{2017}-1< B=5^{2018}-1\)
Vậy 4A < B
Ta có: 5A=5(1+5+52+....+52017)
5A=5+52+53+....+52018
5A-A=(5+52+53+...+52018)-(1+5+52+....+52017)
4A=52018-1
Vì 4A=52018-1. Mà 52018-1=52018-1
Suy ra:4A=B
1. A - B = 40+ 3/8 + 7/82 + 5/83 + 32/85 - (24/82 + 40+ 5/82 + 40/84 + 5/84 )
= 40.85/85 + 3.84/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 40.85/85 + 24.83/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 + 32/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 -8/85 - 5.83/85 - 40.8/85
= 2.83/85 + 5.82/85 - 40.8/85 - 8/85
= 2.83/85 + 40.8/85 - 40.8/85 - 8/85
= 2.83/85 - 8/85 > 0
Vay A > B
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
Cau 1 . Ta co
A=2^450=(2^3)^150 =8^150
B=3^300=(3^2)^150=9^150
Do 8^150<9^150 => A<B
Bạn thân ơi hãy tick đúng nào cần chi phải làm cứ để bị phạt
Hát theo giai điệu Đồ Rê Mí nhé
\(A=\frac{10^5+4}{10^5-1}=1+\frac{5}{10^5-1}\)
\(B=\frac{10^5+3}{10^5-2}=1+\frac{5}{10^5-2}\)
vì \(1+\frac{5}{10^5-1}<1+\frac{5}{10^5-2}\Rightarrow A\)<\(B\)
vậy A<B
So sánh hai phân số: A= 10 5 + 4 trên 105-1 và B= 105 + 3 trên 105- 2
Ta có :
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) )
=> 4A = \(5^{2024}\)- 1
Nhận thấy :
\(5^{2024}\) - 1 > \(5^{2024}\)
=> 4A < \(5^{2024}\)
Vậy 4A < \(5^{2024}\)
Thấy hay tick hộ mk vs ạ