K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

anh / chị  ơi bạn được giảng để giải bài này rồi thì anh / chị có thể giảng lại cho em dc ko cô em giao bài nó giống nhưng em ko hiểu ạ

26 tháng 8 2015

A= 12^2004 - 2^1000= (12^4)^501 - (2^4)^250= (...6)^501 - (...6)^250= ...6  - ...6 = ...0 chia het cho 10 (ĐPCM)

 

a: \(M=\left(1+3^2+3^4+3^6\right)+...+3^{992}\left(1+3^2+3^4+3^6\right)\)

\(=820\left(1+...+3^{992}\right)⋮41\)

b: \(9M=3^2+3^4+...+3^{1000}\)

\(\Leftrightarrow8M=3^{1000}-1\)

hay \(M=\dfrac{3^{1000}-1}{8}\)

6 tháng 10 2016

\(A=1+3+3^2+3^3+...+3^{1999}+3^{2000}\)

\(A=3^0+3^1+3^2+3^3+...+3^{1999}+3^{2000}\)

Xét dãy số : 0 ; 1 ; 2 ; 3 ; ... ; 1999 ; 2000

Số số hạng của dãy số trên là :

    ( 2000 - 0 ) : 1 + 1 = 2001 ( số )

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\) ( 667 cặp số )

\(A=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{1998}.\left(1+3+3^2\right)\)

\(A=1.13+3^3.13+...+3^{1998}.13\)

\(A=\left(1+3^3+...+3^{1998}\right).13\)

=> A chia hết cho 13

7 tháng 9 2017

a, mình nghĩ là \(16^5+2^{15}\)

ta có : \(16^5=2^{20}\)

=>\(16^5+2^{15}=2^{20}+2^{15}\)

=\(2^{15}.2^5+2^{15}\)

\(=2^{15}.\left(2^5+1\right)\)

\(=2^{15}.33\)

mà \(2^{15}.33⋮33\)

\(=>16^5+2^{15}⋮33\)

7 tháng 9 2017

a)Ta thấy: 16^5=2^20

=> A=16^5 + 2^15

= 2^20 + 2^15

= 2^15.2^5 + 2^15

= 2^15(2^5+1)

=2^15.33

số này luôn chia hết cho 33 

b)

18 tháng 8 2016

3≡−1(mod4)⇒3100≡(−1)100=1(mod4)
Vậy 3100 chia 4 dư 1.


a) Ta có 3S=3−32+33−34+...+397−398+399−3100
⇒3S+S=1−3100⇒S=(1−3100)/4
Để chứng minh S chia hết cho 20 ta chứng minh 1−3100 chia hết cho 80.

Ta có 32=9≡−1(mod5)⇒3100≡(−1)50=1(mod5)⇒1−3100≡1−1=0(mod5)
Vậy 1−3100 ⋮5
Ta có 34=81≡1(mod16)⇒3100≡125=1(mod16)⇒1−3100≡1−1=0(mod16)
Vậy 1−3100 ⋮16

Do (5,16)=1⇒1−3100⋮16.5=80⇒(1−3100)/4 ⋮20⇒S thuộc B 20

Sorry vừa ròi mk nhầm S=\(\frac{1-3^{100}}{4}\)mới đúng nha

18 tháng 8 2016

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}.\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}.\)

\(3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)

\(4S=-3^{100}+1\)

\(S=\frac{-3^{100}+1}{4}\)