Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
a, \(S=1+3+3^2+...+3^{2019}\)
\(3S=3+3^2+3^3+...+3^{2020}\)
\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)
\(2S=3^{2020}-1\)
\(S=\frac{3^{2020}-1}{2}\)
b, \(S=1+3+3^2+3^3+...+3^{2019}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\)
\(S=4+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)
\(S=4\cdot1+3^2\cdot4+...+3^{2018}\cdot4\)
\(S=4\left(1+3^2+...+3^{2018}\right)⋮4\)
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
\(A=2+2^2+2^3+...+2^{2019}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+^9\right)+...+\left(2^{2017}+2^{2018}+2^{2019}\right)\)
\(=14+2^4\left(2+2^2+2^3\right)+2^7\left(2+2^2+2^3\right)+...+2^{2017}\left(2+2^2+2^3\right)\)
\(=14+2^4.14+2^7.14+...+2^{2017}.14\)
\(=14\left(1+2^4+2^7+...+2^{2017}\right)⋮14\)
\(\Rightarrow A⋮14\)
#_ARMY_#
Lời giải:
\(P=3+3^2+3^3+...+3^{2018}+3^{2019}\)
\(P=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2016}+3^{2017}+3^{2018}+3^{2019})-1\)
\(=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2016}(1+3+3^2+3^3)-1\)
\(=(1+3+3^2+3^3)(1+3^4+...+3^{2016})-1\)
\(=40(1+3^4+...+3^{2016})-1\)
\(=5.8(1+3^4+...+3^{2016})-5+4\)
\(=5[8(1+3^4+...+3^{2016})-1]+4\)
Vậy $P$ chia $5$ dư $4$ chứ không phải $P$ chia hết cho $5$
Sửa đề: P=1+3+3^2+...+3^2018+3^2019
=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^2016(1+3+3^2+3^3)
=40(1+3^4+...+3^2016) chia hết cho 5
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
3^2019chia hết cho 3 nên tổng số đó chia hết cho 3
k mik :3