Cho A=1+3+32+…..+311 chứng tỏ A \(⋮\) 4
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

\(A=1+3+3^2+...+3^{11}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{10}\right)⋮4\)

`#3107.101107`

`A = 1 + 3 + 3^2 + ... + 3^11`

`= (1 + 3) + (3^2 + 3^3) + ... + (3^10 + 3^11)`

`= (1 + 3) + 3^2(1 + 3) + ... + 3^10(1 + 3)`

`= (1 + 3)(1 + 3^2 + ... + 3^10)`

`= 4(1 + 3^2 + ... + 3^10)`

Vì `4(1 + 3^2 + ... + 3^10) \vdots 4`

`=> A \vdots 4.`

2 tháng 2 2020

đỉ mẹ, đỉ má, cái lồn, con cặc.

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

30 tháng 7 2019

\(S=1+4+4^2+...+4^{49}\)

\(4S=4+4^2+...+4^{50}\)

\(4S-S=4^{50}-1\)

\(3S=4^{50}-1\)

\(S=\frac{4^{50}-1}{3}\)

Hc tốt

\(S=1+4+4^2+...+4^{49}\)

\(4S=\left(4+4^2+...+4^{50}\right)\)

\(4S-S=3S=\left(4+4^2+...+4^{50}\right)-\left(1+4+4^2+...+4^{49}\right)=4^{50}-1\)

\(\Rightarrow S=\frac{4^{50}-1}{3}\)

15 tháng 7 2019

So sánh : 

a ) 31^11 và 17^14

31^11 < 32^11= (25)11 = 2^55

=> 31^11 < 2^55

17^14>16^14=(24)14 = 2^56

=>17^14>2^56

=>31^11 < 2^55 < 2^56 < 17^14

=>31^11 < 17^14

b ) 3^500 và 7^300

3^500 = ( 35)100 = 243100

7^300 = ( 73)100 = 343100

=> 243100 < 343100

=> 3^500 < 7^300

Tìm x : 

a ) 2. 4 = 128

=> 2x = 32

=> 2x = 25

=> x = 5

b ) 2x . 22 = ( 23)2 = 64

=> 2x = 64 : 22 = 16

=> 2x = 24

=> x = 4

15 tháng 7 2019

Bài cuối bạn tham khảo tại : Câu hỏi của Linh Phan - Toán lớp 6 - Học toán với OnlineMath

Link : https://olm.vn/hoi-dap/detail/198524999512.html

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)

 

 

 

 

13 tháng 10 2018

\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)

\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3.\left(2^9+2^7+...+2\right)⋮3\)

P/S: mấy bài khác tương tự

13 tháng 10 2018

\(a,2^{10}+2^9+2^8+...+2\)

\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)

\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)

\(b,1+3+3^2+3^3+...+3^{99}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2.4+...+3^{98}.4\)

\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)

\(c,1+5+5^2+5^3+...+5^{1975}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)

\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)

\(=6+5^2.6+...+5^{1974}.6\)

\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)