![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
\(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}\)
Đặt \(B=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{10000}{10001}\)
Do \(\dfrac{1}{2}< \dfrac{2}{3};\dfrac{3}{4}< \dfrac{4}{5};...;\dfrac{9999}{10000}< \dfrac{10000}{10001}\)
Nên \(C< B\) Mà \(\left\{{}\begin{matrix}C>0\\B>0\end{matrix}\right.\)
\(\Rightarrow C^2< C.B=\left(\dfrac{1}{2}.\dfrac{3}{4}...\dfrac{9999}{10000}\right)\)\(\left(\dfrac{2}{3}.\dfrac{4}{5}...\dfrac{10000}{10001}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{9999}{10000}.\dfrac{10000}{10001}\)
\(=\dfrac{1.2.3.4.5.6...9999.10000}{2.3.4.5.6.7....10000.10001}\)
\(=\dfrac{1}{10001}< \dfrac{1}{10000}=\dfrac{1}{100}.\dfrac{1}{100}=\left(\dfrac{1}{100}\right)^2\)
\(\Rightarrow C^2< \left(\dfrac{1}{100}\right)^2\Leftrightarrow C< \dfrac{1}{100}\)
Vậy \(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{1}{100}\) (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{9999}{10000}\)(1)
Ta có : \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< \frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}\times...\times\frac{10000}{10001}\)(2)
Từ (1) và (2) \(\Rightarrow C^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}\times...\times\frac{9999}{10000}\times\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
\(\Rightarrow C< \frac{1}{100}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{9999}{32000}=0,31246875...\)
\(\frac{1}{1000}=0,001\Rightarrow0,31246875...>0,001\)
\(\Rightarrow A>\frac{1}{1000}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :
1/2 < 2/3
2/3 <3/4
.........
9999/10000 < 10000/10001
suy ra : A2 < 1/2*2/3*3/4******9999/10000*10000/10001
suy ra : A2 < 1/10001 < 1/10000= (1/100)2
suy ra A2 < (1/100)2 . Từ đó: A < 1/100 = 0,01
bài toán ddc chứng minh!!!!!!!!!!! ****
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 1/2<2/3;3/4<4/5;5/6<6/7;....;9999/10000<10000/10001
-->S<2/3.4/5.5/6.....10000/10001
Gọi 2/3.4/5.5/6.....10000/10001 là D và D>S
Có D=2/3.4/5.5/6.....10000/10001
-->S.D=(1/2 . 3/4 . 5/6.....9999/10000).(2/3.4/5.5/6.....10000/10001)
S.D=1/2.2/3.3/4.4/5.5/6.6.7.....9999/10000.10000/10001
S.D=1/10001
Vì S<D nên S.S<S.D hay S.S<1/10001
-->S<1/10001
mà 1/10001<1/100=0.01
-->S<1/100=0.01
-->S<0.01
Vậy
Có \(\frac{1}{2}< \frac{2}{3};\frac{2}{3}< \frac{3}{4};.....;\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow S^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
\(\Rightarrow S^2< \frac{1}{10001}< \frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
\(\Rightarrow S< \frac{1}{1000}< 0,01\)
Vậy S<0,01
![](https://rs.olm.vn/images/avt/0.png?1311)