Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n \(⋮2\)
=> ( n + 1 ) x n : 2 \(⋮1\), n > 1
=> a là số nguyên tố
Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$
$b=2n+1$
Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.
$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$
Có:
$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$
Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)
Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$
$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)
Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau.
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.