K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Ta có : \(A=1+2+2^2+2^3+...+2^{20}\)

\(\Rightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{20}+2^{21}\)

\(\Rightarrow\)\(A=2^{21}-1\)

\(\Rightarrow\)\(A=B\)

Chúc bạn học tốt !

4 tháng 10 2018

A=1+2+2^2+2^3+...+2^20

2A=2+2^2+2^3+2^4+...+2^21

2A-A=2^21-1

=>A=B

20 tháng 9 2016

A = 1 + 2 + 22 + ... + 220

2A = 2 + 22 + 23 + ... + 221

2A - A = (2 + 22 + 23 + ... + 221) - (1 + 2 + 22 + ... + 220)

A = 221 - 1 < 221 = B

=> A < B

21 tháng 12 2017

A = 1 + 2 + 22
 + ... + 220
2A = 2 + 22
 + 23
 + ... + 221
2A - A = (2 + 22
 + 23
 + ... + 221) - (1 + 2 + 22
 + ... + 220)
A = 221
 - 1 < 221
 = B
=> A < B

k cho mk nha $_$

:D

19 tháng 7 2017

a) Ta có: 2003^152>2003^20>199^20

Vậy 2003^152>199^20

b) Ta có: 3^39=(3^13)^3=1594323^3

11^21=(11^7)^3=19487171^3

Vì 1594323^3<19487171^3 nên 3^39<11^21

19 tháng 7 2017

cảm ơn linh nhoa.....

18 tháng 6 2016

Giúp với

18 tháng 6 2016

Chứng minh nếu a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

Do a/b < 1 => a < b

=> am < bm

=> am + ab < bm + ab

=> a.(b+m) < b.(a+m)

=> a/b < a+m/b+m

Áp dụng điều trên ta có: B = 1020 + 1/ 1021 + 1 < 1

=> B < 1020 + 1 + 9/1021 + 1 + 9

=> B < 1020 + 10/1021 + 10

=> B < 10.(1019 + 1)/10.(1020 + 1)

=> B < 1019+1/1020+1 = A

=> B < A

b) n + 1 chia hết cho n - 2

=> n - 2 + 3 chia hết cho n - 2

Do n - 2 chia hết cho n - 2

=> 3 chia hết cho n - 2

=> n - 2 thuộc { 1 ; -1 ; 3 ; -3}

=> n thuộc { 3 ; 1 ; 5 ; -1}

Vậy n thuộc { 3 ; 1 ; 5 ; -1}

7 tháng 10 2017
a) < b) > d) < e) > f) >
30 tháng 9 2017

a) \(A=1+2+2^2+...+2^{63}\)

\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{63}\right)\)

\(\Rightarrow2A=2+2^2+...+2^{64}\)

\(\Rightarrow2A-A=2+2^2+...+2^{64}-\left(1+2+2^2+...+2^{63}\right)\)

\(\Rightarrow A=2+2^2+...+2^{64}-1-2-2^2-...-2^{63}\)

\(\Rightarrow A=2^{64}-1\)

Vì \(2^{64}-1=2^{64}-1\Rightarrow A=B\)

b) \(A=3^4+3^5+...+3^{20}\)

\(\Rightarrow3A=3^5+3^6+...+3^{21}\)

\(\Rightarrow3A-A=3^5+3^6+...+3^{21}-3^4-3^5-...-3^{20}\)

\(\Rightarrow2A=3^{21}-3^4\)

\(\Rightarrow A=\frac{3^{21}-3^4}{2}\)

Mà \(B=\frac{3^{21}-3^4}{2}\Rightarrow A=B\)

9 tháng 8 2020

a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)

=> 2A = 2 + 22 + 23 + ... + 22009 (2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)

       A = 22009 - 1

Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)

=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)

=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)

=> A - 1 < B - 1

=> A < B

9 tháng 8 2020

a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

Đặt \(Q=1+2+2^2+...+2^{2008}\)

\(2Q=2+2^2+2^3+...+2^{2009}\)

\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)

\(\Rightarrow Q=2^{2009}-1\)

Ta thấy \(Q\) là số đối của \(2^{2009}-1\)

\(\Rightarrow B=-1\)

Vậy \(B=-1\).

b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).