Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
c.
C= ( a+b+c)2+(a+b-c)2- 2(a+b)2
=a2+b2+c2+a2+b2- c2-2a2-2b2
= 2a2+2b2+c2-c2-2a2-2b2
= 0
Vậy C= 0
a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc
Ta có \(\frac{5^3.90.4^3}{25^2.3^2.2^{13}}\)
\(=\frac{5^3.2.3^2.5.\left(2^2\right)^3}{\left(5^2\right)^2.3^2.2^{13}}\)
\(=\frac{5^4.2^{13}.3^2}{5^4.3^2.2^{13}}\)
\(=1\)
kết quả là \(\frac{720000}{46080000}=\frac{1}{64}\)nha !!!
k mk nha !!!!!!!^-^
a=\(1+2+2^2+..+2^{25}\)(1)
2a=\(2+2^2+2^3+...+2^{26}\)(2)
trừ vế với vế của 2 cho 1
2a-a =\(\left(2+2^2+..+2^{26}\right)-\left(1+2+..+2^{25}\right)\)
a=\(2^{26}-1\)
b a=\(1+2+...+2^{25}\)
a=\(\left(1+2\right)+\left(2^2+2^3\right)...+\left(2^{24}+2^{25}\right)\)
a=3+\(2^2.\left(1+2\right)\).......+\(2^{24}.\left(1+2\right)\)
a=3+\(2^2.3\)+....+\(2^{24}.3\)
a=3.(\(1+2^2+...+2^{24}\))\(⋮\)3
=>đpcm
1, A = 1 + 2 + 22 + ... + 225
2A = 2 + 22 + 23 + ... + 226
2A - A = ( 2 + 22 + 23 + ... + 226 ) - ( 1 + 2 + 22 + ... + 225 )
A = 226 - 1
Vậy A = 226 - 1
2, A = 1 + 2 + 22 + ... + 225
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 224 + 225 )
A = 3 + 22 ( 1 + 2 ) + ... + 224 ( 1 + 2 )
A = 3 ( 1 + 22 + ... + 224 ) \(⋮\)3
Vậy A \(⋮\)3
Hok tốt