Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M chia hết cho 7 là rõ ràng vì các số hạng của M đều là lũy thừa của 7
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{59}+7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=\left(7+7^3+...+7^{59}\right).8\)
=> M cũng chia hết cho 9
Làm tương tự, để chứng minh M chia hết cho 50 thì ta nhóm số thứ nhất với số thứ ba,, số thứ hai với số thứ tư, số thứ ba với số thứ năm, v.v.
\(M=\left(7+7^3\right)+\left(7^2+7^4\right)+...+\left(7^{57}+7^{59}\right)+\left(7^{58}+7^{60}\right)\)
\(=7\left(1+7^2\right)+7^2\left(1+7^2\right)+...+7^{57}\left(1+7^2\right)+7^{58}\left(1+7^2\right)\)
\(=7.50+7^2.50+...+7^{57}.50+7^{58}.50\)
\(=\left(7+7^2+...+7^{57}+7^{58}\right).50\)
=> M cũng chia hết cho 50
b) Rút gọn M.
\(M=7+7^2+...+7^{59}+7^{60}\) (1)
=> Chia cả hai vế cho 7 ta có:
\(\frac{M}{7}=1+7+7^2+...+7^{59}\) (2)
Lấy (1) trừ cho (2) vế với vế và bỏ đi các thành phần triệt tiêu ta có:
\(M-\frac{M}{7}=7^{60}-1\)
\(\Rightarrow\frac{6}{7}M=7^{60}-1\)
\(\Rightarrow M=\frac{\left(7^{60}-1\right).7}{6}\)
Em k tính đc những phương pháp giao hoán, kết hợp,v.v.. thì làm kiểu đơn giản bình thường thôi! K cần bắt buộc đâu! Bài dễ mà!
D=32×92×243+18×243×324+723×729
D=715392+18x78732+527067
D=715392+1417176+527067
D=2659635
Lời giải:
$A=\frac{1}{2^2}(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2})$
$=\frac{1}{4}(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2})$
$<\frac{1}{4}(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50})$
$=\frac{1}{4}(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50})$
$=\frac{1}{4}(1+1-\frac{1}{50})=\frac{1}{4}(2-\frac{1}{50})< \frac{1}{4}.2=\frac{1}{2}$
Ta có đpcm.